盐水虾线粒体ATP合酶的低温电镜结构揭示了ATP合酶泄漏通道的失活机制

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amrendra Kumar, Juliana da Fonseca Rezende e Mello, Yangyu Wu, Daniel Morris, Ikram Mezghani, Erin Smith, Stephane Rombauts, Peter Bossier, Juno Krahn, Fred J. Sigworth, Nelli Mnatsakanyan
{"title":"盐水虾线粒体ATP合酶的低温电镜结构揭示了ATP合酶泄漏通道的失活机制","authors":"Amrendra Kumar, Juliana da Fonseca Rezende e Mello, Yangyu Wu, Daniel Morris, Ikram Mezghani, Erin Smith, Stephane Rombauts, Peter Bossier, Juno Krahn, Fred J. Sigworth, Nelli Mnatsakanyan","doi":"10.1038/s41418-025-01476-w","DOIUrl":null,"url":null,"abstract":"<p>Mammalian mitochondria undergo Ca<sup>2+</sup>-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca<sup>2+</sup>-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca<sup>2+</sup>-activated leak channels involved in mPT. Unlike in mammals, mitochondria of the crustacean <i>Artemia franciscana</i> have the ability to accumulate large amounts of Ca<sup>2+</sup> without undergoing the mPT. Here, we performed structural and functional analysis of <i>A. franciscana</i> ATP synthase to study the molecular mechanism of mPTP inhibition in this organism. We found that the channel formed by the <i>A. franciscana</i> ATP synthase dwells predominantly in its inactive state and is insensitive to Ca<sup>2+</sup>, in contrast to porcine heart ATP synthase. Single-particle cryo-electron microscopy (cryo-EM) analysis revealed distinct structural features in <i>A. franciscana</i> ATP synthase compared with mammals. The stronger density of the e-subunit C-terminal region and its enhanced interaction with the c-ring were found in <i>A. franciscana</i> ATP synthase. These data suggest an inactivation mechanism of the ATP synthase leak channel and its possible contribution to the lack of mPT in this organism.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"56 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structure of the brine shrimp mitochondrial ATP synthase suggests an inactivation mechanism for the ATP synthase leak channel\",\"authors\":\"Amrendra Kumar, Juliana da Fonseca Rezende e Mello, Yangyu Wu, Daniel Morris, Ikram Mezghani, Erin Smith, Stephane Rombauts, Peter Bossier, Juno Krahn, Fred J. Sigworth, Nelli Mnatsakanyan\",\"doi\":\"10.1038/s41418-025-01476-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mammalian mitochondria undergo Ca<sup>2+</sup>-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca<sup>2+</sup>-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca<sup>2+</sup>-activated leak channels involved in mPT. Unlike in mammals, mitochondria of the crustacean <i>Artemia franciscana</i> have the ability to accumulate large amounts of Ca<sup>2+</sup> without undergoing the mPT. Here, we performed structural and functional analysis of <i>A. franciscana</i> ATP synthase to study the molecular mechanism of mPTP inhibition in this organism. We found that the channel formed by the <i>A. franciscana</i> ATP synthase dwells predominantly in its inactive state and is insensitive to Ca<sup>2+</sup>, in contrast to porcine heart ATP synthase. Single-particle cryo-electron microscopy (cryo-EM) analysis revealed distinct structural features in <i>A. franciscana</i> ATP synthase compared with mammals. The stronger density of the e-subunit C-terminal region and its enhanced interaction with the c-ring were found in <i>A. franciscana</i> ATP synthase. These data suggest an inactivation mechanism of the ATP synthase leak channel and its possible contribution to the lack of mPT in this organism.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01476-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01476-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物线粒体通过激活位于线粒体内膜的线粒体通透性过渡孔(mPTP),进行Ca2+诱导和环孢菌素(CsA)调控的通透性过渡(mPT)。在一定病理条件下,Ca2+诱导的mPTP开放时间延长,导致线粒体肿胀和外膜破裂,导致线粒体功能障碍和细胞死亡。虽然mPTP的确切分子组成和结构尚不清楚,但据报道,哺乳动物ATP合酶在mPT中形成电压和Ca2+激活的泄漏通道。与哺乳动物不同,甲壳类动物Artemia franciscana的线粒体有能力在不经历mPT的情况下积累大量的Ca2+。在此,我们对A. franciscana ATP合成酶进行了结构和功能分析,以研究该生物抑制mPTP的分子机制。我们发现,与猪心脏ATP合酶不同,A. franciscana ATP合酶形成的通道主要处于失活状态,对Ca2+不敏感。单粒子低温电子显微镜(cryo-EM)分析显示,与哺乳动物相比,franciscana ATP合酶具有明显的结构特征。在三磷酸腺苷合酶中,e亚基c端区密度更大,与c环的相互作用增强。这些数据提示ATP合酶泄漏通道的失活机制及其可能对该生物体中mPT缺乏的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cryo-EM structure of the brine shrimp mitochondrial ATP synthase suggests an inactivation mechanism for the ATP synthase leak channel

Cryo-EM structure of the brine shrimp mitochondrial ATP synthase suggests an inactivation mechanism for the ATP synthase leak channel

Mammalian mitochondria undergo Ca2+-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca2+-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca2+-activated leak channels involved in mPT. Unlike in mammals, mitochondria of the crustacean Artemia franciscana have the ability to accumulate large amounts of Ca2+ without undergoing the mPT. Here, we performed structural and functional analysis of A. franciscana ATP synthase to study the molecular mechanism of mPTP inhibition in this organism. We found that the channel formed by the A. franciscana ATP synthase dwells predominantly in its inactive state and is insensitive to Ca2+, in contrast to porcine heart ATP synthase. Single-particle cryo-electron microscopy (cryo-EM) analysis revealed distinct structural features in A. franciscana ATP synthase compared with mammals. The stronger density of the e-subunit C-terminal region and its enhanced interaction with the c-ring were found in A. franciscana ATP synthase. These data suggest an inactivation mechanism of the ATP synthase leak channel and its possible contribution to the lack of mPT in this organism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信