Xu Tang;Jiangbo Chen;Zheng Qu;Jingyi Zhu;Mohammadreza Amjadian;Mingxuan Yang;Yingpeng Wan;Lidai Wang
{"title":"从噪声数据中学习的高灵敏度光声成像","authors":"Xu Tang;Jiangbo Chen;Zheng Qu;Jingyi Zhu;Mohammadreza Amjadian;Mingxuan Yang;Yingpeng Wan;Lidai Wang","doi":"10.1109/TMI.2025.3552692","DOIUrl":null,"url":null,"abstract":"Photoacoustic imaging (PAI) is a high-resolution biomedical imaging technology for the non-invasive detection of a broad range of chromophores at multiple scales and depths. However, limited by low chromophore concentration, weak signals in deep tissue, or various noise, the signal-to-noise ratio of photoacoustic images may be compromised in many biomedical applications. Although improvements in hardware and computational methods have been made to address this problem, they have not been readily available due to either high costs or an inability to generalize across different datasets. Here, we present a self-supervised deep learning method to increase the signal-to-noise ratio of photoacoustic images using noisy data only. Because this method does not require expensive ground truth data for training, it can be easily implemented across scanning microscopic and computed tomographic data acquired with various photoacoustic imaging systems. In vivo results show that our method makes the vascular details that were completely submerged in noise become clearly visible, increases the signal-to-noise ratio by up to 12-fold, doubles the imaging depth, and enables high-contrast imaging of deep tumors. We believe this method can be readily applied to many preclinical and clinical applications.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 7","pages":"2868-2877"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Sensitivity Photoacoustic Imaging by Learning From Noisy Data\",\"authors\":\"Xu Tang;Jiangbo Chen;Zheng Qu;Jingyi Zhu;Mohammadreza Amjadian;Mingxuan Yang;Yingpeng Wan;Lidai Wang\",\"doi\":\"10.1109/TMI.2025.3552692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoacoustic imaging (PAI) is a high-resolution biomedical imaging technology for the non-invasive detection of a broad range of chromophores at multiple scales and depths. However, limited by low chromophore concentration, weak signals in deep tissue, or various noise, the signal-to-noise ratio of photoacoustic images may be compromised in many biomedical applications. Although improvements in hardware and computational methods have been made to address this problem, they have not been readily available due to either high costs or an inability to generalize across different datasets. Here, we present a self-supervised deep learning method to increase the signal-to-noise ratio of photoacoustic images using noisy data only. Because this method does not require expensive ground truth data for training, it can be easily implemented across scanning microscopic and computed tomographic data acquired with various photoacoustic imaging systems. In vivo results show that our method makes the vascular details that were completely submerged in noise become clearly visible, increases the signal-to-noise ratio by up to 12-fold, doubles the imaging depth, and enables high-contrast imaging of deep tumors. We believe this method can be readily applied to many preclinical and clinical applications.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 7\",\"pages\":\"2868-2877\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10934013/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10934013/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Sensitivity Photoacoustic Imaging by Learning From Noisy Data
Photoacoustic imaging (PAI) is a high-resolution biomedical imaging technology for the non-invasive detection of a broad range of chromophores at multiple scales and depths. However, limited by low chromophore concentration, weak signals in deep tissue, or various noise, the signal-to-noise ratio of photoacoustic images may be compromised in many biomedical applications. Although improvements in hardware and computational methods have been made to address this problem, they have not been readily available due to either high costs or an inability to generalize across different datasets. Here, we present a self-supervised deep learning method to increase the signal-to-noise ratio of photoacoustic images using noisy data only. Because this method does not require expensive ground truth data for training, it can be easily implemented across scanning microscopic and computed tomographic data acquired with various photoacoustic imaging systems. In vivo results show that our method makes the vascular details that were completely submerged in noise become clearly visible, increases the signal-to-noise ratio by up to 12-fold, doubles the imaging depth, and enables high-contrast imaging of deep tumors. We believe this method can be readily applied to many preclinical and clinical applications.