{"title":"评估用于基因编辑和激活的微型 AsCas12f1 变体","authors":"Chuanhong Ren, Zehua Bao","doi":"10.1002/bit.28978","DOIUrl":null,"url":null,"abstract":"Miniature CRISPR/Cas systems possess delivery advantages for gene therapy. The type V-F Cas12f1 from <i>Acidibacillus sulfuroxidans</i> is exceptionally compact (422 amino acids) and has been engineered by several studies as compact genome editing tools through protein and single guide RNA (sgRNA) engineering. However, a comparative evaluation of gene editing and activation efficiencies mediated by different AsCas12f1 variants and sgRNA scaffolds is lacking. This study tested combinations of four AsCas12f1 protein variants and six sgRNA scaffolds for their gene editing and transcription activation efficiencies. The protein variant AsCas12f1-HKRA performed the best in gene editing and activation when paired with sgRNA-en_v2.1 scaffold. Furthermore, we validated a super miniature gene activator by fusing a small activation domain to AsCas12f1-HKRA. Our findings recommend using AsCas12f1-HKRA and sgRNA-en_v2.1 for gene editing and activation applications.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"29 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Miniature AsCas12f1 Variants for Gene Editing and Activation\",\"authors\":\"Chuanhong Ren, Zehua Bao\",\"doi\":\"10.1002/bit.28978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniature CRISPR/Cas systems possess delivery advantages for gene therapy. The type V-F Cas12f1 from <i>Acidibacillus sulfuroxidans</i> is exceptionally compact (422 amino acids) and has been engineered by several studies as compact genome editing tools through protein and single guide RNA (sgRNA) engineering. However, a comparative evaluation of gene editing and activation efficiencies mediated by different AsCas12f1 variants and sgRNA scaffolds is lacking. This study tested combinations of four AsCas12f1 protein variants and six sgRNA scaffolds for their gene editing and transcription activation efficiencies. The protein variant AsCas12f1-HKRA performed the best in gene editing and activation when paired with sgRNA-en_v2.1 scaffold. Furthermore, we validated a super miniature gene activator by fusing a small activation domain to AsCas12f1-HKRA. Our findings recommend using AsCas12f1-HKRA and sgRNA-en_v2.1 for gene editing and activation applications.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.28978\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28978","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Assessment of Miniature AsCas12f1 Variants for Gene Editing and Activation
Miniature CRISPR/Cas systems possess delivery advantages for gene therapy. The type V-F Cas12f1 from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been engineered by several studies as compact genome editing tools through protein and single guide RNA (sgRNA) engineering. However, a comparative evaluation of gene editing and activation efficiencies mediated by different AsCas12f1 variants and sgRNA scaffolds is lacking. This study tested combinations of four AsCas12f1 protein variants and six sgRNA scaffolds for their gene editing and transcription activation efficiencies. The protein variant AsCas12f1-HKRA performed the best in gene editing and activation when paired with sgRNA-en_v2.1 scaffold. Furthermore, we validated a super miniature gene activator by fusing a small activation domain to AsCas12f1-HKRA. Our findings recommend using AsCas12f1-HKRA and sgRNA-en_v2.1 for gene editing and activation applications.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.