{"title":"Autonomous shaping of the piRNA sequence repertoire by competition between adjacent ping-pong amplification sites","authors":"Jie Yu, Fumiko Kawasaki, Natsuko Izumi, Takashi Kiuchi, Susumu Katsuma, Yukihide Tomari, Keisuke Shoji","doi":"10.1016/j.molcel.2025.02.015","DOIUrl":null,"url":null,"abstract":"PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs). In many species, piRNAs are generated via a complex process known as the ping-pong pathway, coupling TE cleavage with piRNA amplification. However, the biological significance of this complexity remains unclear. Here, we systematically compared piRNA profiles in two related silkworm cell lines and found significant changes in their sequence repertoire. Importantly, the changeability of this repertoire negatively correlated with the piRNA biogenesis efficiency, a trend also observed in <em>Drosophila</em> stocks and single silkworm eggs. This can be explained by competition between adjacent ping-pong sites, supported by our mathematical modeling. Moreover, this competition can rationalize how piRNAs autonomously avoid deleterious mismatches to target TEs in silkworms, flies, and mice. These findings unveil the intrinsic plasticity and adaptability of the piRNA system to combat diverse TE sequences and highlight the universal power of competition and self-amplification to drive autonomous optimization.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"61 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.02.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
PIWI-interacting RNA(piRNA)是沉默转座元件(TE)的关键。在许多物种中,piRNA 是通过一种被称为 "乒乓途径 "的复杂过程产生的,它将 TE 的裂解与 piRNA 的扩增结合在一起。然而,这种复杂性的生物学意义仍不清楚。在这里,我们系统地比较了两种相关家蚕细胞系的 piRNA 图谱,发现它们的序列库发生了显著变化。重要的是,这种序列的可变性与 piRNA 的生物发生效率呈负相关,果蝇种群和单个蚕卵中也观察到了这种趋势。这可以用相邻乒乓位点之间的竞争来解释,我们的数学建模也支持这一观点。此外,这种竞争还能合理解释 piRNA 如何在家蚕、苍蝇和小鼠中自主避免目标 TE 的有害错配。这些发现揭示了 piRNA 系统对抗不同 TE 序列的内在可塑性和适应性,并强调了竞争和自我扩增推动自主优化的普遍力量。
Autonomous shaping of the piRNA sequence repertoire by competition between adjacent ping-pong amplification sites
PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs). In many species, piRNAs are generated via a complex process known as the ping-pong pathway, coupling TE cleavage with piRNA amplification. However, the biological significance of this complexity remains unclear. Here, we systematically compared piRNA profiles in two related silkworm cell lines and found significant changes in their sequence repertoire. Importantly, the changeability of this repertoire negatively correlated with the piRNA biogenesis efficiency, a trend also observed in Drosophila stocks and single silkworm eggs. This can be explained by competition between adjacent ping-pong sites, supported by our mathematical modeling. Moreover, this competition can rationalize how piRNAs autonomously avoid deleterious mismatches to target TEs in silkworms, flies, and mice. These findings unveil the intrinsic plasticity and adaptability of the piRNA system to combat diverse TE sequences and highlight the universal power of competition and self-amplification to drive autonomous optimization.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.