提高蛀牙的社会经济地位预测:一种混合方法。

A T M Dao, L G Do, N Stormon, H V Nguyen, D H Ha
{"title":"提高蛀牙的社会经济地位预测:一种混合方法。","authors":"A T M Dao, L G Do, N Stormon, H V Nguyen, D H Ha","doi":"10.1177/00220345251324494","DOIUrl":null,"url":null,"abstract":"<p><p>Socioeconomic status (SES) measures one's access to social resources across various dimensions. Traditionally, studies on SES commonly use principal component analysis (PCA), a data-driven method, to condense these dimensions into components, typically selecting the first component to represent SES. However, PCA may lack specificity for particular outcomes. Decision tree analysis (DTA), a knowledge-driven approach that identifies outcome-specific dimensions, may address PCA's weaknesses but might not comprehensively capture SES. This study hypothesized that combining DTA and PCA to create SES predictors could enhance predictive accuracy more than using PCA alone could. It also explored whether the DTA-PCA combination, incorporating only significant loading indicators (SLIs) of the first component, could simplify SES predictors without compromising predictive accuracy. The study analyzed 12 SES indicators from the Study of Mothers' and Infants' Life Events Affecting Oral Health (SMILE) birth cohort study, involving 2,182 children. Five SES composites were created: 1 solely from DTA-identified indicators and 2 pairs combining values from either the entire first PCA component or SLIs with and without DTA. These composites served as predictors for predicting dental caries in 5 predictive models. Model accuracy was evaluated using root mean squared error with 5-fold cross-validation. SES composites derived from the DTA-PCA combination demonstrated superior predictive accuracy compared with those from the PCA-only approach. By incorporating only SLIs, this hybrid method generated SES predictors that not only outperformed those using the entire first component but also demonstrated noninferiority relative to the DTA-only method. This approach offers a promising framework for developing SES composites to predict dental caries, potentially improving the precision of predictive models. In addition, this method offers a practical framework for creating composite predictors from multi-item measurements across various outcomes. For future research using this method, a 3-step process is recommended: (1) identify relevant items using DTA, (2) determine their weights through PCA, and (3) generate a composite using the SLIs.</p>","PeriodicalId":94075,"journal":{"name":"Journal of dental research","volume":" ","pages":"220345251324494"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Socioeconomic Status Prediction for Cavities: A Hybrid Method.\",\"authors\":\"A T M Dao, L G Do, N Stormon, H V Nguyen, D H Ha\",\"doi\":\"10.1177/00220345251324494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Socioeconomic status (SES) measures one's access to social resources across various dimensions. Traditionally, studies on SES commonly use principal component analysis (PCA), a data-driven method, to condense these dimensions into components, typically selecting the first component to represent SES. However, PCA may lack specificity for particular outcomes. Decision tree analysis (DTA), a knowledge-driven approach that identifies outcome-specific dimensions, may address PCA's weaknesses but might not comprehensively capture SES. This study hypothesized that combining DTA and PCA to create SES predictors could enhance predictive accuracy more than using PCA alone could. It also explored whether the DTA-PCA combination, incorporating only significant loading indicators (SLIs) of the first component, could simplify SES predictors without compromising predictive accuracy. The study analyzed 12 SES indicators from the Study of Mothers' and Infants' Life Events Affecting Oral Health (SMILE) birth cohort study, involving 2,182 children. Five SES composites were created: 1 solely from DTA-identified indicators and 2 pairs combining values from either the entire first PCA component or SLIs with and without DTA. These composites served as predictors for predicting dental caries in 5 predictive models. Model accuracy was evaluated using root mean squared error with 5-fold cross-validation. SES composites derived from the DTA-PCA combination demonstrated superior predictive accuracy compared with those from the PCA-only approach. By incorporating only SLIs, this hybrid method generated SES predictors that not only outperformed those using the entire first component but also demonstrated noninferiority relative to the DTA-only method. This approach offers a promising framework for developing SES composites to predict dental caries, potentially improving the precision of predictive models. In addition, this method offers a practical framework for creating composite predictors from multi-item measurements across various outcomes. For future research using this method, a 3-step process is recommended: (1) identify relevant items using DTA, (2) determine their weights through PCA, and (3) generate a composite using the SLIs.</p>\",\"PeriodicalId\":94075,\"journal\":{\"name\":\"Journal of dental research\",\"volume\":\" \",\"pages\":\"220345251324494\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of dental research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345251324494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00220345251324494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会经济地位(SES)衡量一个人在各个方面获得社会资源的机会。传统上,对SES的研究通常使用主成分分析(PCA),一种数据驱动的方法,将这些维度压缩成组件,通常选择第一个组件来表示SES。然而,PCA可能对特定的结果缺乏特异性。决策树分析(DTA)是一种识别结果特定维度的知识驱动方法,它可以解决PCA的弱点,但可能无法全面捕获SES。本研究假设结合DTA和PCA创建SES预测因子比单独使用PCA更能提高预测精度。本文还探讨了仅纳入第一个分量的显著负荷指标(SLIs)的DTA-PCA组合是否可以在不影响预测准确性的情况下简化SES预测。该研究分析了来自母亲和婴儿影响口腔健康的生活事件研究(SMILE)出生队列研究的12个SES指标,涉及2182名儿童。建立了5个SES组合:1个单独由DTA识别的指标组成,2对组合值来自整个第一个PCA成分或有或没有DTA的SLIs。这些组合物在5种预测模型中作为预测龋病的预测因子。采用5倍交叉验证的均方根误差评估模型精度。与仅使用pca的方法相比,由DTA-PCA组合获得的SES复合材料显示出更高的预测准确性。通过仅结合sli,这种混合方法生成的SES预测器不仅优于使用整个第一组分的预测器,而且相对于仅使用dta的方法也显示出非劣效性。这种方法为开发SES复合材料来预测龋齿提供了一个有希望的框架,有可能提高预测模型的精度。此外,该方法还提供了一个实用的框架,用于从跨各种结果的多项测量中创建复合预测器。对于未来使用该方法的研究,建议采用三步流程:(1)使用DTA识别相关项目,(2)通过PCA确定其权重,(3)使用sli生成复合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Socioeconomic Status Prediction for Cavities: A Hybrid Method.

Socioeconomic status (SES) measures one's access to social resources across various dimensions. Traditionally, studies on SES commonly use principal component analysis (PCA), a data-driven method, to condense these dimensions into components, typically selecting the first component to represent SES. However, PCA may lack specificity for particular outcomes. Decision tree analysis (DTA), a knowledge-driven approach that identifies outcome-specific dimensions, may address PCA's weaknesses but might not comprehensively capture SES. This study hypothesized that combining DTA and PCA to create SES predictors could enhance predictive accuracy more than using PCA alone could. It also explored whether the DTA-PCA combination, incorporating only significant loading indicators (SLIs) of the first component, could simplify SES predictors without compromising predictive accuracy. The study analyzed 12 SES indicators from the Study of Mothers' and Infants' Life Events Affecting Oral Health (SMILE) birth cohort study, involving 2,182 children. Five SES composites were created: 1 solely from DTA-identified indicators and 2 pairs combining values from either the entire first PCA component or SLIs with and without DTA. These composites served as predictors for predicting dental caries in 5 predictive models. Model accuracy was evaluated using root mean squared error with 5-fold cross-validation. SES composites derived from the DTA-PCA combination demonstrated superior predictive accuracy compared with those from the PCA-only approach. By incorporating only SLIs, this hybrid method generated SES predictors that not only outperformed those using the entire first component but also demonstrated noninferiority relative to the DTA-only method. This approach offers a promising framework for developing SES composites to predict dental caries, potentially improving the precision of predictive models. In addition, this method offers a practical framework for creating composite predictors from multi-item measurements across various outcomes. For future research using this method, a 3-step process is recommended: (1) identify relevant items using DTA, (2) determine their weights through PCA, and (3) generate a composite using the SLIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信