化学活性液滴的微观和随机模拟。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Roxanne Berthin, Jacques D Fries, Marie Jardat, Vincent Dahirel, Pierre Illien
{"title":"化学活性液滴的微观和随机模拟。","authors":"Roxanne Berthin, Jacques D Fries, Marie Jardat, Vincent Dahirel, Pierre Illien","doi":"10.1103/PhysRevE.111.L023403","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular condensates play a central role in the spatial organization of living matter. Their formation is now well understood as a form of liquid-liquid phase separation that occurs very far from equilibrium. For instance, they can be modeled as active droplets, where the combination of molecular interactions and chemical reactions result in microphase separation. However, so far, models of chemically active droplets are spatially continuous and deterministic. Therefore, the relationship between the microscopic parameters of the models and some crucial properties of active droplets (such as their polydispersity, their shape anisotropy, or their typical lifetime) is yet to be established. In this work, we address this question computationally, using Brownian dynamics simulations of chemically active droplets: the building blocks are represented explicitly as particles that interact with attractive or repulsive interactions, depending on whether they are in a droplet-forming state or not. Thanks to this microscopic and stochastic view of the problem, we reveal how driving the system away from equilibrium in a controlled way determines the fluctuations and dynamics of active emulsions.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2","pages":"L023403"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic and stochastic simulations of chemically active droplets.\",\"authors\":\"Roxanne Berthin, Jacques D Fries, Marie Jardat, Vincent Dahirel, Pierre Illien\",\"doi\":\"10.1103/PhysRevE.111.L023403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomolecular condensates play a central role in the spatial organization of living matter. Their formation is now well understood as a form of liquid-liquid phase separation that occurs very far from equilibrium. For instance, they can be modeled as active droplets, where the combination of molecular interactions and chemical reactions result in microphase separation. However, so far, models of chemically active droplets are spatially continuous and deterministic. Therefore, the relationship between the microscopic parameters of the models and some crucial properties of active droplets (such as their polydispersity, their shape anisotropy, or their typical lifetime) is yet to be established. In this work, we address this question computationally, using Brownian dynamics simulations of chemically active droplets: the building blocks are represented explicitly as particles that interact with attractive or repulsive interactions, depending on whether they are in a droplet-forming state or not. Thanks to this microscopic and stochastic view of the problem, we reveal how driving the system away from equilibrium in a controlled way determines the fluctuations and dynamics of active emulsions.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"111 2\",\"pages\":\"L023403\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.L023403\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L023403","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

生物分子凝聚体在生物物质的空间组织中起着核心作用。它们的形成现在被很好地理解为一种液-液相分离的形式,发生在远离平衡的地方。例如,它们可以被建模为活性液滴,其中分子相互作用和化学反应的结合导致微相分离。然而,到目前为止,化学活性液滴的模型是空间连续和确定性的。因此,模型的微观参数与活性液滴的一些关键性质(如它们的多分散性、它们的形状各向异性或它们的典型寿命)之间的关系尚未建立。在这项工作中,我们通过计算解决了这个问题,使用化学活性液滴的布朗动力学模拟:构建块被明确表示为与吸引或排斥相互作用的粒子,这取决于它们是否处于液滴形成状态。由于这个问题的微观和随机观点,我们揭示了如何以受控的方式驱动系统远离平衡决定了活性乳剂的波动和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microscopic and stochastic simulations of chemically active droplets.

Biomolecular condensates play a central role in the spatial organization of living matter. Their formation is now well understood as a form of liquid-liquid phase separation that occurs very far from equilibrium. For instance, they can be modeled as active droplets, where the combination of molecular interactions and chemical reactions result in microphase separation. However, so far, models of chemically active droplets are spatially continuous and deterministic. Therefore, the relationship between the microscopic parameters of the models and some crucial properties of active droplets (such as their polydispersity, their shape anisotropy, or their typical lifetime) is yet to be established. In this work, we address this question computationally, using Brownian dynamics simulations of chemically active droplets: the building blocks are represented explicitly as particles that interact with attractive or repulsive interactions, depending on whether they are in a droplet-forming state or not. Thanks to this microscopic and stochastic view of the problem, we reveal how driving the system away from equilibrium in a controlled way determines the fluctuations and dynamics of active emulsions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信