{"title":"曲面上图灵图案动力学的弱非线性分析。","authors":"Ryosuke Nishide, Shuji Ishihara","doi":"10.1103/PhysRevE.111.024208","DOIUrl":null,"url":null,"abstract":"<p><p>Pattern dynamics on curved surfaces are ubiquitous. Although the effect of surface topography on pattern dynamics has gained much interest, there is a limited understanding of the roles of surface geometry and topology in pattern dynamics. Recently, we reported that a static pattern on a flat plane can become a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)10.1103/PhysRevLett.128.224101]. By examining reaction-diffusion equations on axisymmetric surfaces, certain conditions for the onset of pattern propagation were determined. However, this analysis was limited by the assumption that the pattern propagates at a constant speed. Here, we investigate the pattern propagation driven by surface curvature using weakly nonlinear analysis, which enables a more comprehensive approach to the aforementioned problem. The analysis reveals consistent conditions of the pattern propagation similar to our previous results, and further predicts that rich dynamics other than pattern propagation, such as periodic and chaotic behaviors, can arise depending on the surface geometry. This study provides a perspective on the relationship between surfaces and pattern dynamics and a basis for controlling pattern dynamics on surfaces.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 2-1","pages":"024208"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly nonlinear analysis of Turing pattern dynamics on curved surfaces.\",\"authors\":\"Ryosuke Nishide, Shuji Ishihara\",\"doi\":\"10.1103/PhysRevE.111.024208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pattern dynamics on curved surfaces are ubiquitous. Although the effect of surface topography on pattern dynamics has gained much interest, there is a limited understanding of the roles of surface geometry and topology in pattern dynamics. Recently, we reported that a static pattern on a flat plane can become a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)10.1103/PhysRevLett.128.224101]. By examining reaction-diffusion equations on axisymmetric surfaces, certain conditions for the onset of pattern propagation were determined. However, this analysis was limited by the assumption that the pattern propagates at a constant speed. Here, we investigate the pattern propagation driven by surface curvature using weakly nonlinear analysis, which enables a more comprehensive approach to the aforementioned problem. The analysis reveals consistent conditions of the pattern propagation similar to our previous results, and further predicts that rich dynamics other than pattern propagation, such as periodic and chaotic behaviors, can arise depending on the surface geometry. This study provides a perspective on the relationship between surfaces and pattern dynamics and a basis for controlling pattern dynamics on surfaces.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"111 2-1\",\"pages\":\"024208\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.024208\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.024208","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Weakly nonlinear analysis of Turing pattern dynamics on curved surfaces.
Pattern dynamics on curved surfaces are ubiquitous. Although the effect of surface topography on pattern dynamics has gained much interest, there is a limited understanding of the roles of surface geometry and topology in pattern dynamics. Recently, we reported that a static pattern on a flat plane can become a propagating pattern on a curved surface [Phys. Rev. Lett. 128, 224101 (2022)10.1103/PhysRevLett.128.224101]. By examining reaction-diffusion equations on axisymmetric surfaces, certain conditions for the onset of pattern propagation were determined. However, this analysis was limited by the assumption that the pattern propagates at a constant speed. Here, we investigate the pattern propagation driven by surface curvature using weakly nonlinear analysis, which enables a more comprehensive approach to the aforementioned problem. The analysis reveals consistent conditions of the pattern propagation similar to our previous results, and further predicts that rich dynamics other than pattern propagation, such as periodic and chaotic behaviors, can arise depending on the surface geometry. This study provides a perspective on the relationship between surfaces and pattern dynamics and a basis for controlling pattern dynamics on surfaces.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.