一种新的基于p值的广义线性模型多重检验方法。

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Statistics and Computing Pub Date : 2025-01-01 Epub Date: 2025-03-16 DOI:10.1007/s11222-025-10600-2
Joseph Rilling, Cheng Yong Tang
{"title":"一种新的基于p值的广义线性模型多重检验方法。","authors":"Joseph Rilling, Cheng Yong Tang","doi":"10.1007/s11222-025-10600-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel <i>p</i>-value-based multiple testing approach tailored for generalized linear models. Despite the crucial role of generalized linear models in statistics, existing methodologies face obstacles arising from the heterogeneous variance of response variables and complex dependencies among estimated parameters. Our aim is to address the challenge of controlling the false discovery rate (FDR) amidst arbitrarily dependent test statistics. Through the development of efficient computational algorithms, we present a versatile statistical framework for multiple testing. The proposed framework accommodates a range of tools developed for constructing a new model matrix in regression-type analysis, including random row permutations and Model-X knockoffs. We devise efficient computing techniques to solve the encountered non-trivial quadratic matrix equations, enabling the construction of paired <i>p</i>-values suitable for the two-step multiple testing procedure proposed by Sarkar and Tang (Biometrika 109(4): 1149-1155, 2022). Theoretical analysis affirms the properties of our approach, demonstrating its capability to control the FDR at a given level. Empirical evaluations further substantiate its promising performance across diverse simulation settings.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11222-025-10600-2.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 3","pages":"69"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911269/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new <i>p</i>-value based multiple testing procedure for generalized linear models.\",\"authors\":\"Joseph Rilling, Cheng Yong Tang\",\"doi\":\"10.1007/s11222-025-10600-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a novel <i>p</i>-value-based multiple testing approach tailored for generalized linear models. Despite the crucial role of generalized linear models in statistics, existing methodologies face obstacles arising from the heterogeneous variance of response variables and complex dependencies among estimated parameters. Our aim is to address the challenge of controlling the false discovery rate (FDR) amidst arbitrarily dependent test statistics. Through the development of efficient computational algorithms, we present a versatile statistical framework for multiple testing. The proposed framework accommodates a range of tools developed for constructing a new model matrix in regression-type analysis, including random row permutations and Model-X knockoffs. We devise efficient computing techniques to solve the encountered non-trivial quadratic matrix equations, enabling the construction of paired <i>p</i>-values suitable for the two-step multiple testing procedure proposed by Sarkar and Tang (Biometrika 109(4): 1149-1155, 2022). Theoretical analysis affirms the properties of our approach, demonstrating its capability to control the FDR at a given level. Empirical evaluations further substantiate its promising performance across diverse simulation settings.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11222-025-10600-2.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"35 3\",\"pages\":\"69\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-025-10600-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-025-10600-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种针对广义线性模型的基于p值的多重检验方法。尽管广义线性模型在统计中起着至关重要的作用,但由于响应变量的异质性和估计参数之间的复杂依赖关系,现有的方法面临着障碍。我们的目标是解决在任意依赖的测试统计中控制错误发现率(FDR)的挑战。通过开发高效的计算算法,我们提出了一个通用的多重测试统计框架。所提议的框架包含了一系列用于在回归型分析中构建新模型矩阵的工具,包括随机行排列和model - x仿制品。我们设计了高效的计算技术来求解遇到的非平凡二次矩阵方程,从而能够构建适合Sarkar和Tang (Biometrika 109(4): 1149-1155, 2022)提出的两步多重检验程序的成对p值。理论分析证实了我们的方法的特性,证明了它在给定水平上控制FDR的能力。经验评估进一步证实了其在不同模拟设置中的良好性能。补充信息:在线版本包含补充信息,提供地址为10.1007/s11222-025-10600-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new p-value based multiple testing procedure for generalized linear models.

This study introduces a novel p-value-based multiple testing approach tailored for generalized linear models. Despite the crucial role of generalized linear models in statistics, existing methodologies face obstacles arising from the heterogeneous variance of response variables and complex dependencies among estimated parameters. Our aim is to address the challenge of controlling the false discovery rate (FDR) amidst arbitrarily dependent test statistics. Through the development of efficient computational algorithms, we present a versatile statistical framework for multiple testing. The proposed framework accommodates a range of tools developed for constructing a new model matrix in regression-type analysis, including random row permutations and Model-X knockoffs. We devise efficient computing techniques to solve the encountered non-trivial quadratic matrix equations, enabling the construction of paired p-values suitable for the two-step multiple testing procedure proposed by Sarkar and Tang (Biometrika 109(4): 1149-1155, 2022). Theoretical analysis affirms the properties of our approach, demonstrating its capability to control the FDR at a given level. Empirical evaluations further substantiate its promising performance across diverse simulation settings.

Supplementary information: The online version contains supplementary material available at 10.1007/s11222-025-10600-2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信