使用改进的DCGAN对数字病理学进行隐私保护数据增强。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fengjun Hu, Fan Wu, Dongping Zhang, Hanjie Gu
{"title":"使用改进的DCGAN对数字病理学进行隐私保护数据增强。","authors":"Fengjun Hu, Fan Wu, Dongping Zhang, Hanjie Gu","doi":"10.1109/JBHI.2025.3551720","DOIUrl":null,"url":null,"abstract":"<p><p>The intelligent analysis of Whole Slide Images (WSI) in digital pathology is critical for advancing precision medicine, particularly in oncology. However, the availability of WSI datasets is often limited by privacy regulations, which constrains the performance and generalizability of deep learning models. To address this challenge, this paper proposes an improved data augmentation method based on Deep Convolutional Generative Adversarial Network (DCGAN). Our approach leverages self-supervised pretraining with the CTransPath model to extract diverse and representationally rich WSI features, which guide the generation of high-quality synthetic images. We further enhance the model by introducing a least-squares adversarial loss and a frequency domain loss to improve pixel-level accuracy and structural fidelity, while incorporating residual blocks and skip connections to increase network depth, mitigate gradient vanishing, and improve training stability. Experimental results on the PatchCamelyon dataset demonstrate that our improved DCGAN achieves superior SSIM and FID scores compared to traditional models. The augmented datasets significantly enhance the performance of downstream classification tasks, improving accuracy, AUC, and F1 scores.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-Preserving Data Augmentation for Digital Pathology Using Improved DCGAN.\",\"authors\":\"Fengjun Hu, Fan Wu, Dongping Zhang, Hanjie Gu\",\"doi\":\"10.1109/JBHI.2025.3551720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intelligent analysis of Whole Slide Images (WSI) in digital pathology is critical for advancing precision medicine, particularly in oncology. However, the availability of WSI datasets is often limited by privacy regulations, which constrains the performance and generalizability of deep learning models. To address this challenge, this paper proposes an improved data augmentation method based on Deep Convolutional Generative Adversarial Network (DCGAN). Our approach leverages self-supervised pretraining with the CTransPath model to extract diverse and representationally rich WSI features, which guide the generation of high-quality synthetic images. We further enhance the model by introducing a least-squares adversarial loss and a frequency domain loss to improve pixel-level accuracy and structural fidelity, while incorporating residual blocks and skip connections to increase network depth, mitigate gradient vanishing, and improve training stability. Experimental results on the PatchCamelyon dataset demonstrate that our improved DCGAN achieves superior SSIM and FID scores compared to traditional models. The augmented datasets significantly enhance the performance of downstream classification tasks, improving accuracy, AUC, and F1 scores.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3551720\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3551720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数字病理学中全幻灯片图像(WSI)的智能分析对于推进精准医学至关重要,特别是在肿瘤学领域。然而,WSI数据集的可用性通常受到隐私法规的限制,这限制了深度学习模型的性能和可泛化性。为了解决这一挑战,本文提出了一种基于深度卷积生成对抗网络(DCGAN)的改进数据增强方法。我们的方法利用CTransPath模型的自监督预训练来提取多样化和代表性丰富的WSI特征,这些特征指导生成高质量的合成图像。我们通过引入最小二乘对抗损失和频域损失来进一步增强模型,以提高像素级精度和结构保真度,同时结合剩余块和跳过连接来增加网络深度,减轻梯度消失,并提高训练稳定性。在PatchCamelyon数据集上的实验结果表明,与传统模型相比,改进的DCGAN获得了更高的SSIM和FID分数。增强后的数据集显著提高了下游分类任务的性能,提高了准确率、AUC和F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-Preserving Data Augmentation for Digital Pathology Using Improved DCGAN.

The intelligent analysis of Whole Slide Images (WSI) in digital pathology is critical for advancing precision medicine, particularly in oncology. However, the availability of WSI datasets is often limited by privacy regulations, which constrains the performance and generalizability of deep learning models. To address this challenge, this paper proposes an improved data augmentation method based on Deep Convolutional Generative Adversarial Network (DCGAN). Our approach leverages self-supervised pretraining with the CTransPath model to extract diverse and representationally rich WSI features, which guide the generation of high-quality synthetic images. We further enhance the model by introducing a least-squares adversarial loss and a frequency domain loss to improve pixel-level accuracy and structural fidelity, while incorporating residual blocks and skip connections to increase network depth, mitigate gradient vanishing, and improve training stability. Experimental results on the PatchCamelyon dataset demonstrate that our improved DCGAN achieves superior SSIM and FID scores compared to traditional models. The augmented datasets significantly enhance the performance of downstream classification tasks, improving accuracy, AUC, and F1 scores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信