Ying Liu, Jingying Shen, Haowei Zhang, Haikuan Liu
{"title":"一种基于临床胸部CT序列图像的空间分辨率测量方法。","authors":"Ying Liu, Jingying Shen, Haowei Zhang, Haikuan Liu","doi":"10.1002/acm2.70078","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop and validate a method for characterizing the spatial resolution of clinical chest computed tomography (CT) sequence images.</p><p><strong>Methods: </strong>An algorithm for characterizing spatial resolution based on clinical chest CT sequence images was developed in Matlab (2021b). The algorithm was validated using CT sequence images from a custom-made chest automatic tube current modulation (ATCM) phantom and clinically reconstructed chest CT sequence images. A region of interest (ROI) was automatically established at the edges of CT image subject to calculate the edge spread function (ESF). The ESF curves from consecutive CT images within the same sequence were fitted into a curve, and the line spread function (LSF) was derived through differentiation. A Fourier transformation of the LSF curve was conducted to obtain the modulation transfer function (MTF). The method's effectiveness was verified by comparing the 50% MTF and 10% MTF values with those calculated using IndoQCT (22a) software. The method was also applied to clinical CT images to calculate MTF values for various reconstructions, confirming its sensitivity by determining spatial resolution of clinically reconstructed images.</p><p><strong>Results: </strong>Validation experiments based on the phantom CT sequence images demonstrated that the MTF values calculated using the proposed method had an average difference of within ± 5% compared to the results obtained with IndoQCT. Validation experiments with clinical CT sequence images indicated that the method effectively reflects differences and variations in spatial resolution of images under different reconstruction kernels, with the MTF values for B10f-B50f and D10f-D50f exhibiting a consistent increase.</p><p><strong>Conclusion: </strong>A method for measuring spatial resolution using clinical chest CT sequence images was developed. This method provides a direct means of spatial resolution characterization for clinical CT datasets and a more accurate representation of CT imaging quality, effectively reflects variations across different reconstruction convolution kernels, demonstrating its sensitivity.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e70078"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for measuring spatial resolution based on clinical chest CT sequence images.\",\"authors\":\"Ying Liu, Jingying Shen, Haowei Zhang, Haikuan Liu\",\"doi\":\"10.1002/acm2.70078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to develop and validate a method for characterizing the spatial resolution of clinical chest computed tomography (CT) sequence images.</p><p><strong>Methods: </strong>An algorithm for characterizing spatial resolution based on clinical chest CT sequence images was developed in Matlab (2021b). The algorithm was validated using CT sequence images from a custom-made chest automatic tube current modulation (ATCM) phantom and clinically reconstructed chest CT sequence images. A region of interest (ROI) was automatically established at the edges of CT image subject to calculate the edge spread function (ESF). The ESF curves from consecutive CT images within the same sequence were fitted into a curve, and the line spread function (LSF) was derived through differentiation. A Fourier transformation of the LSF curve was conducted to obtain the modulation transfer function (MTF). The method's effectiveness was verified by comparing the 50% MTF and 10% MTF values with those calculated using IndoQCT (22a) software. The method was also applied to clinical CT images to calculate MTF values for various reconstructions, confirming its sensitivity by determining spatial resolution of clinically reconstructed images.</p><p><strong>Results: </strong>Validation experiments based on the phantom CT sequence images demonstrated that the MTF values calculated using the proposed method had an average difference of within ± 5% compared to the results obtained with IndoQCT. Validation experiments with clinical CT sequence images indicated that the method effectively reflects differences and variations in spatial resolution of images under different reconstruction kernels, with the MTF values for B10f-B50f and D10f-D50f exhibiting a consistent increase.</p><p><strong>Conclusion: </strong>A method for measuring spatial resolution using clinical chest CT sequence images was developed. This method provides a direct means of spatial resolution characterization for clinical CT datasets and a more accurate representation of CT imaging quality, effectively reflects variations across different reconstruction convolution kernels, demonstrating its sensitivity.</p>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\" \",\"pages\":\"e70078\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/acm2.70078\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.70078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A method for measuring spatial resolution based on clinical chest CT sequence images.
Purpose: This study aimed to develop and validate a method for characterizing the spatial resolution of clinical chest computed tomography (CT) sequence images.
Methods: An algorithm for characterizing spatial resolution based on clinical chest CT sequence images was developed in Matlab (2021b). The algorithm was validated using CT sequence images from a custom-made chest automatic tube current modulation (ATCM) phantom and clinically reconstructed chest CT sequence images. A region of interest (ROI) was automatically established at the edges of CT image subject to calculate the edge spread function (ESF). The ESF curves from consecutive CT images within the same sequence were fitted into a curve, and the line spread function (LSF) was derived through differentiation. A Fourier transformation of the LSF curve was conducted to obtain the modulation transfer function (MTF). The method's effectiveness was verified by comparing the 50% MTF and 10% MTF values with those calculated using IndoQCT (22a) software. The method was also applied to clinical CT images to calculate MTF values for various reconstructions, confirming its sensitivity by determining spatial resolution of clinically reconstructed images.
Results: Validation experiments based on the phantom CT sequence images demonstrated that the MTF values calculated using the proposed method had an average difference of within ± 5% compared to the results obtained with IndoQCT. Validation experiments with clinical CT sequence images indicated that the method effectively reflects differences and variations in spatial resolution of images under different reconstruction kernels, with the MTF values for B10f-B50f and D10f-D50f exhibiting a consistent increase.
Conclusion: A method for measuring spatial resolution using clinical chest CT sequence images was developed. This method provides a direct means of spatial resolution characterization for clinical CT datasets and a more accurate representation of CT imaging quality, effectively reflects variations across different reconstruction convolution kernels, demonstrating its sensitivity.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic