Ruiyang Zhang, Feifei Hou, Jianguo Gan, Lishen Zhang, Dan Yang, Fan Yang, Xiaoqiang Xia, Qianming Chen, Ce Bian, Xiaodong Feng
{"title":"二甲双胍诱导的E6/E7抑制通过p53再激活阻止hpv阳性癌症进展。","authors":"Ruiyang Zhang, Feifei Hou, Jianguo Gan, Lishen Zhang, Dan Yang, Fan Yang, Xiaoqiang Xia, Qianming Chen, Ce Bian, Xiaodong Feng","doi":"10.1097/CAD.0000000000001711","DOIUrl":null,"url":null,"abstract":"<p><p>The human papillomavirus (HPV) is implicated in multiple lethal cancers, although it is more sensitive to certain therapies than HPV-negative cancers. Therefore, the development of more targeted therapeutic strategies is imperative. The HPV oncogenes E6/E7 are ideal targets for HPV-positive cancer, but there are no clinical strategies that have been proven to effectively target E6/E7. Notably, metformin significantly inhibits E6/E7 expression; however, the underlying mechanism and therapeutic potential remain unclear, limiting its clinical translation. Cell Counting Kit-8, ethynyl-2'-deoxyuridine, and terminal-deoxynucleotidyl transferase-mediated Nick end labeling assays were conducted to evaluate the effects of metformin on cell viability, proliferation, and apoptosis. Quantitative real-time PCR, western blotting, and immunofluorescence assays were performed to determine changes in E6/E7 and p53 expression levels following metformin treatment. Patient-derived organoids and in-vivo xenograft models were constructed to evaluate the anticancer activity of metformin against HPV-positive cancer. Our research demonstrated enhanced sensitivity of HPV-positive cancer cells to metformin. Mechanistic studies have revealed that metformin exerts anticancer effects by inhibiting E6/E7 expression, which is associated with p53 reactivation. Furthermore, we substantiated the anticancer potential of metformin in HPV-positive patient-derived organoids and in-vivo tumor models. Our study focused on the mechanism underlying the enhanced responsiveness of HPV-positive cancer to metformin, highlighting the clinical potential of metformin as a targeted therapeutic strategy for HPV-positive cancer.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"468-477"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin-induced E6/E7 inhibition prevents HPV-positive cancer progression through p53 reactivation.\",\"authors\":\"Ruiyang Zhang, Feifei Hou, Jianguo Gan, Lishen Zhang, Dan Yang, Fan Yang, Xiaoqiang Xia, Qianming Chen, Ce Bian, Xiaodong Feng\",\"doi\":\"10.1097/CAD.0000000000001711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human papillomavirus (HPV) is implicated in multiple lethal cancers, although it is more sensitive to certain therapies than HPV-negative cancers. Therefore, the development of more targeted therapeutic strategies is imperative. The HPV oncogenes E6/E7 are ideal targets for HPV-positive cancer, but there are no clinical strategies that have been proven to effectively target E6/E7. Notably, metformin significantly inhibits E6/E7 expression; however, the underlying mechanism and therapeutic potential remain unclear, limiting its clinical translation. Cell Counting Kit-8, ethynyl-2'-deoxyuridine, and terminal-deoxynucleotidyl transferase-mediated Nick end labeling assays were conducted to evaluate the effects of metformin on cell viability, proliferation, and apoptosis. Quantitative real-time PCR, western blotting, and immunofluorescence assays were performed to determine changes in E6/E7 and p53 expression levels following metformin treatment. Patient-derived organoids and in-vivo xenograft models were constructed to evaluate the anticancer activity of metformin against HPV-positive cancer. Our research demonstrated enhanced sensitivity of HPV-positive cancer cells to metformin. Mechanistic studies have revealed that metformin exerts anticancer effects by inhibiting E6/E7 expression, which is associated with p53 reactivation. Furthermore, we substantiated the anticancer potential of metformin in HPV-positive patient-derived organoids and in-vivo tumor models. Our study focused on the mechanism underlying the enhanced responsiveness of HPV-positive cancer to metformin, highlighting the clinical potential of metformin as a targeted therapeutic strategy for HPV-positive cancer.</p>\",\"PeriodicalId\":7969,\"journal\":{\"name\":\"Anti-Cancer Drugs\",\"volume\":\" \",\"pages\":\"468-477\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-Cancer Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CAD.0000000000001711\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001711","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Metformin-induced E6/E7 inhibition prevents HPV-positive cancer progression through p53 reactivation.
The human papillomavirus (HPV) is implicated in multiple lethal cancers, although it is more sensitive to certain therapies than HPV-negative cancers. Therefore, the development of more targeted therapeutic strategies is imperative. The HPV oncogenes E6/E7 are ideal targets for HPV-positive cancer, but there are no clinical strategies that have been proven to effectively target E6/E7. Notably, metformin significantly inhibits E6/E7 expression; however, the underlying mechanism and therapeutic potential remain unclear, limiting its clinical translation. Cell Counting Kit-8, ethynyl-2'-deoxyuridine, and terminal-deoxynucleotidyl transferase-mediated Nick end labeling assays were conducted to evaluate the effects of metformin on cell viability, proliferation, and apoptosis. Quantitative real-time PCR, western blotting, and immunofluorescence assays were performed to determine changes in E6/E7 and p53 expression levels following metformin treatment. Patient-derived organoids and in-vivo xenograft models were constructed to evaluate the anticancer activity of metformin against HPV-positive cancer. Our research demonstrated enhanced sensitivity of HPV-positive cancer cells to metformin. Mechanistic studies have revealed that metformin exerts anticancer effects by inhibiting E6/E7 expression, which is associated with p53 reactivation. Furthermore, we substantiated the anticancer potential of metformin in HPV-positive patient-derived organoids and in-vivo tumor models. Our study focused on the mechanism underlying the enhanced responsiveness of HPV-positive cancer to metformin, highlighting the clinical potential of metformin as a targeted therapeutic strategy for HPV-positive cancer.
期刊介绍:
Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.