冻干策略增强了偶联和复合亚基脂质体佐剂结核疫苗制剂(ID93 + GLA-LSQ)的热稳定性和场稳定性。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-04-07 Epub Date: 2025-03-19 DOI:10.1021/acs.molpharmaceut.5c00150
Babatunde Ayodeji Adeagbo, Morayo Alao, Ochuko Orherhe, Abdulafeez Akinloye, Gerhardt Boukes, Elize Willenburg, Caryn Fenner, Oluseye Oladotun Bolaji, Christopher B Fox
{"title":"冻干策略增强了偶联和复合亚基脂质体佐剂结核疫苗制剂(ID93 + GLA-LSQ)的热稳定性和场稳定性。","authors":"Babatunde Ayodeji Adeagbo, Morayo Alao, Ochuko Orherhe, Abdulafeez Akinloye, Gerhardt Boukes, Elize Willenburg, Caryn Fenner, Oluseye Oladotun Bolaji, Christopher B Fox","doi":"10.1021/acs.molpharmaceut.5c00150","DOIUrl":null,"url":null,"abstract":"<p><p>ID93 + GLA-LSQ is an adjuvanted recombinant protein vaccine candidate that has demonstrated robust T-cell immunity and reduced bacterial burden in preclinical studies. Here, we explored the strategy of lyophilization by introducing 10% Trehalose as a bulking agent and cryoprotectant to develop a thermostable single-vial formulation of ID93 + GLA-LSQ. We further examined the stability of lyophilized formulations stored at 4 and 37 °C in the research laboratory and field stability across five study sites. Co-mixed (CoVL) and conjugated (ConjVL) formulations were prepared and assessed for various stability parameters including cake quality, melting point, liposome reformation, particle size, GLA/QS-21 concentration, presence of ID93, and biological activity for three months in the research laboratory and nine months at ambient temperature in five health centers. Stability assessment for both formulations stored in the research laboratory for three months showed that they were physically stable and biologically active. The field-based ambient stability assessment showed that the formulations maintained physical integrity, liposomal structure, and antigen integrity, with limited chemical degradation of GLA and QS-21 adjuvants observed. ConjVL retains GLA slightly better than the CoVL formulation, and a moderate increase in particle size was observed after nine months. These findings showed that the formulations demonstrate a promising stability profile after extended storage at ambient temperature, suggesting the potential for real-world application without strict refrigeration requirements.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2306-2315"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyophilization Strategy Enhances the Thermostability and Field-Based Stability of Conjugated and Comixed Subunit Liposomal Adjuvant-containing Tuberculosis Vaccine Formulation (ID93 + GLA-LSQ).\",\"authors\":\"Babatunde Ayodeji Adeagbo, Morayo Alao, Ochuko Orherhe, Abdulafeez Akinloye, Gerhardt Boukes, Elize Willenburg, Caryn Fenner, Oluseye Oladotun Bolaji, Christopher B Fox\",\"doi\":\"10.1021/acs.molpharmaceut.5c00150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ID93 + GLA-LSQ is an adjuvanted recombinant protein vaccine candidate that has demonstrated robust T-cell immunity and reduced bacterial burden in preclinical studies. Here, we explored the strategy of lyophilization by introducing 10% Trehalose as a bulking agent and cryoprotectant to develop a thermostable single-vial formulation of ID93 + GLA-LSQ. We further examined the stability of lyophilized formulations stored at 4 and 37 °C in the research laboratory and field stability across five study sites. Co-mixed (CoVL) and conjugated (ConjVL) formulations were prepared and assessed for various stability parameters including cake quality, melting point, liposome reformation, particle size, GLA/QS-21 concentration, presence of ID93, and biological activity for three months in the research laboratory and nine months at ambient temperature in five health centers. Stability assessment for both formulations stored in the research laboratory for three months showed that they were physically stable and biologically active. The field-based ambient stability assessment showed that the formulations maintained physical integrity, liposomal structure, and antigen integrity, with limited chemical degradation of GLA and QS-21 adjuvants observed. ConjVL retains GLA slightly better than the CoVL formulation, and a moderate increase in particle size was observed after nine months. These findings showed that the formulations demonstrate a promising stability profile after extended storage at ambient temperature, suggesting the potential for real-world application without strict refrigeration requirements.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"2306-2315\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.5c00150\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00150","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

ID93 + GLA-LSQ是一种佐剂重组蛋白候选疫苗,在临床前研究中显示出强大的t细胞免疫和减少细菌负担。在这里,我们通过引入10%海藻糖作为填充剂和冷冻保护剂来探索冻干策略,以开发一种耐热的ID93 + GLA-LSQ单瓶配方。我们进一步检查了在研究实验室中储存在4°C和37°C的冻干制剂的稳定性以及在五个研究地点的现场稳定性。制备了共混(CoVL)和共轭(ConjVL)配方,并对饼质量、熔点、脂质体重组、粒径、GLA/QS-21浓度、ID93的存在和生物活性等各种稳定性参数进行了评估,分别在研究实验室和五个卫生中心的环境温度下进行了三个月和九个月的研究。两种制剂在研究实验室储存三个月后的稳定性评估表明,它们具有物理稳定性和生物活性。基于现场的环境稳定性评估表明,制剂保持了物理完整性、脂质体结构和抗原完整性,GLA和QS-21佐剂的化学降解有限。相比CoVL配方,convl保留GLA稍好,9个月后观察到颗粒大小适度增加。这些发现表明,这些配方在室温下长时间储存后表现出了很好的稳定性,这表明在没有严格制冷要求的情况下,它们有可能在现实世界中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lyophilization Strategy Enhances the Thermostability and Field-Based Stability of Conjugated and Comixed Subunit Liposomal Adjuvant-containing Tuberculosis Vaccine Formulation (ID93 + GLA-LSQ).

ID93 + GLA-LSQ is an adjuvanted recombinant protein vaccine candidate that has demonstrated robust T-cell immunity and reduced bacterial burden in preclinical studies. Here, we explored the strategy of lyophilization by introducing 10% Trehalose as a bulking agent and cryoprotectant to develop a thermostable single-vial formulation of ID93 + GLA-LSQ. We further examined the stability of lyophilized formulations stored at 4 and 37 °C in the research laboratory and field stability across five study sites. Co-mixed (CoVL) and conjugated (ConjVL) formulations were prepared and assessed for various stability parameters including cake quality, melting point, liposome reformation, particle size, GLA/QS-21 concentration, presence of ID93, and biological activity for three months in the research laboratory and nine months at ambient temperature in five health centers. Stability assessment for both formulations stored in the research laboratory for three months showed that they were physically stable and biologically active. The field-based ambient stability assessment showed that the formulations maintained physical integrity, liposomal structure, and antigen integrity, with limited chemical degradation of GLA and QS-21 adjuvants observed. ConjVL retains GLA slightly better than the CoVL formulation, and a moderate increase in particle size was observed after nine months. These findings showed that the formulations demonstrate a promising stability profile after extended storage at ambient temperature, suggesting the potential for real-world application without strict refrigeration requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信