用平衡函数研究pp碰撞后期粒子产生

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Alexandru Manea, Claude Pruneau, Diana Catalina Brandibur, Andrea Danu, Alexandru F. Dobrin, Victor Gonzalez, Sumit Basu
{"title":"用平衡函数研究pp碰撞后期粒子产生","authors":"Alexandru Manea,&nbsp;Claude Pruneau,&nbsp;Diana Catalina Brandibur,&nbsp;Andrea Danu,&nbsp;Alexandru F. Dobrin,&nbsp;Victor Gonzalez,&nbsp;Sumit Basu","doi":"10.1140/epjc/s10052-025-14049-5","DOIUrl":null,"url":null,"abstract":"<div><p>Balance functions have been regarded in the past as a method of investigating the late-stage hadronization found in the presence of a strongly-coupled medium. They are also used to constrain mechanisms of particle production in large and small collision systems. Charge balance functions for inclusive and identified particle pairs are reported as a function of charged particle multiplicity in proton–proton collisions simulated with the PYTHIA8 and the EPOS4 models. The charge balance functions of inclusive, pion, kaon, and proton pairs exhibit amplitudes and shapes that depend on particle species and differ significantly in the two models due to the different particle production mechanisms implemented in PYTHIA and EPOS. The shapes and amplitudes also evolve with multiplicity in both models. In addition, the evolution of the longitudinal rms width and that of balance functions integrals with multiplicity (and average transverse momentum) feature significant differences in the two models.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14049-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating late-stage particle production in pp collisions with balance functions\",\"authors\":\"Alexandru Manea,&nbsp;Claude Pruneau,&nbsp;Diana Catalina Brandibur,&nbsp;Andrea Danu,&nbsp;Alexandru F. Dobrin,&nbsp;Victor Gonzalez,&nbsp;Sumit Basu\",\"doi\":\"10.1140/epjc/s10052-025-14049-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Balance functions have been regarded in the past as a method of investigating the late-stage hadronization found in the presence of a strongly-coupled medium. They are also used to constrain mechanisms of particle production in large and small collision systems. Charge balance functions for inclusive and identified particle pairs are reported as a function of charged particle multiplicity in proton–proton collisions simulated with the PYTHIA8 and the EPOS4 models. The charge balance functions of inclusive, pion, kaon, and proton pairs exhibit amplitudes and shapes that depend on particle species and differ significantly in the two models due to the different particle production mechanisms implemented in PYTHIA and EPOS. The shapes and amplitudes also evolve with multiplicity in both models. In addition, the evolution of the longitudinal rms width and that of balance functions integrals with multiplicity (and average transverse momentum) feature significant differences in the two models.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14049-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14049-5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14049-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

平衡函数在过去被认为是研究在强耦合介质存在下发现的后期强子化的一种方法。它们还用于约束大型和小型碰撞系统中粒子产生的机制。在用PYTHIA8和EPOS4模型模拟的质子-质子碰撞中,包含粒子对和识别粒子对的电荷平衡函数是带电粒子多重性的函数。包子对、介子对、介子对和质子对的电荷平衡函数表现出依赖于粒子种类的振幅和形状,并且由于PYTHIA和EPOS中实现的粒子产生机制不同,在两个模型中存在显著差异。在两种模型中,形状和振幅也随着多样性而演变。此外,两种模型的纵向均方根宽度和多重平衡函数积分(和平均横向动量)的演化也存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating late-stage particle production in pp collisions with balance functions

Balance functions have been regarded in the past as a method of investigating the late-stage hadronization found in the presence of a strongly-coupled medium. They are also used to constrain mechanisms of particle production in large and small collision systems. Charge balance functions for inclusive and identified particle pairs are reported as a function of charged particle multiplicity in proton–proton collisions simulated with the PYTHIA8 and the EPOS4 models. The charge balance functions of inclusive, pion, kaon, and proton pairs exhibit amplitudes and shapes that depend on particle species and differ significantly in the two models due to the different particle production mechanisms implemented in PYTHIA and EPOS. The shapes and amplitudes also evolve with multiplicity in both models. In addition, the evolution of the longitudinal rms width and that of balance functions integrals with multiplicity (and average transverse momentum) feature significant differences in the two models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信