双厚刚性结构在非周期底形态上水波散射的边界元解

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Nidhi Sharma, Deepali Goyal, S.C. Martha
{"title":"双厚刚性结构在非周期底形态上水波散射的边界元解","authors":"Nidhi Sharma,&nbsp;Deepali Goyal,&nbsp;S.C. Martha","doi":"10.1016/j.enganabound.2025.106216","DOIUrl":null,"url":null,"abstract":"<div><div>The combined effect of dual rigid structures over non-periodic bottom morphologies is examined through a boundary value problem to characterize the scattering phenomenon. Three different types of bottom morphologies: (a) monotonically decreasing oscillatory, (b) exponential decreasing oscillatory and (c) Gaussian oscillatory are taken into consideration. Utilizing the boundary element method (BEM), the boundary value problem coins to a system of algebraic equations that can be solved numerically to determine the physical quantities such as reflection and transmission coefficients. The reflection coefficient is compared to the results available in the literature, and a good agreement is found, indicating the validity of the current approach. Reflection is seen to increase with the decay factor, number of ripples, and width of the structures. Interestingly, a split in the Bragg peak is noted which increases with increasing gap and number of ripples but decreases with increasing in decay factor and submergence depth of both structures. Zeros in reflection are vanished due to the presence of both structures. It is found that Bragg resonance is observed for all three bottom profiles Comparison analysis between monotonically decreasing profile, Gaussian profile and exponentially decreasing profile is made which portrays that the Bragg peak is highest for monotonically decreasing oscillatory profile. This model is an attempt to create a tranquil zone utilizing breakwaters.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"175 ","pages":"Article 106216"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEM solution for scattering of water waves by dual thick rigid structures over non-periodic bottom morphologies\",\"authors\":\"Nidhi Sharma,&nbsp;Deepali Goyal,&nbsp;S.C. Martha\",\"doi\":\"10.1016/j.enganabound.2025.106216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combined effect of dual rigid structures over non-periodic bottom morphologies is examined through a boundary value problem to characterize the scattering phenomenon. Three different types of bottom morphologies: (a) monotonically decreasing oscillatory, (b) exponential decreasing oscillatory and (c) Gaussian oscillatory are taken into consideration. Utilizing the boundary element method (BEM), the boundary value problem coins to a system of algebraic equations that can be solved numerically to determine the physical quantities such as reflection and transmission coefficients. The reflection coefficient is compared to the results available in the literature, and a good agreement is found, indicating the validity of the current approach. Reflection is seen to increase with the decay factor, number of ripples, and width of the structures. Interestingly, a split in the Bragg peak is noted which increases with increasing gap and number of ripples but decreases with increasing in decay factor and submergence depth of both structures. Zeros in reflection are vanished due to the presence of both structures. It is found that Bragg resonance is observed for all three bottom profiles Comparison analysis between monotonically decreasing profile, Gaussian profile and exponentially decreasing profile is made which portrays that the Bragg peak is highest for monotonically decreasing oscillatory profile. This model is an attempt to create a tranquil zone utilizing breakwaters.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"175 \",\"pages\":\"Article 106216\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799725001043\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725001043","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过边值问题来表征散射现象,研究了双刚性结构对非周期底部形貌的综合影响。考虑了三种不同类型的底部形态:(a)单调递减振荡,(b)指数递减振荡和(c)高斯振荡。利用边界元法(BEM),边值问题转化为一组代数方程,这些方程可以通过数值求解来确定反射系数和透射系数等物理量。将反射系数与文献中已有的结果进行了比较,发现两者吻合良好,表明了当前方法的有效性。反射随衰减因子、波纹数和结构宽度的增加而增加。有趣的是,布拉格峰的分裂随着间隙和波纹数量的增加而增加,但随着两种结构的衰减因子和淹没深度的增加而减少。由于两种结构的存在,反射中的零消失了。通过对单调递减型、高斯型和指数递减型的对比分析,发现单调递减型的Bragg峰最高。这个模型试图利用防波堤创造一个宁静的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BEM solution for scattering of water waves by dual thick rigid structures over non-periodic bottom morphologies
The combined effect of dual rigid structures over non-periodic bottom morphologies is examined through a boundary value problem to characterize the scattering phenomenon. Three different types of bottom morphologies: (a) monotonically decreasing oscillatory, (b) exponential decreasing oscillatory and (c) Gaussian oscillatory are taken into consideration. Utilizing the boundary element method (BEM), the boundary value problem coins to a system of algebraic equations that can be solved numerically to determine the physical quantities such as reflection and transmission coefficients. The reflection coefficient is compared to the results available in the literature, and a good agreement is found, indicating the validity of the current approach. Reflection is seen to increase with the decay factor, number of ripples, and width of the structures. Interestingly, a split in the Bragg peak is noted which increases with increasing gap and number of ripples but decreases with increasing in decay factor and submergence depth of both structures. Zeros in reflection are vanished due to the presence of both structures. It is found that Bragg resonance is observed for all three bottom profiles Comparison analysis between monotonically decreasing profile, Gaussian profile and exponentially decreasing profile is made which portrays that the Bragg peak is highest for monotonically decreasing oscillatory profile. This model is an attempt to create a tranquil zone utilizing breakwaters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信