用密度功能紧密结合方法研究铅纳米结构:Slater-Koster参数

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Andres Unigarro, Florian Günther and Sibylle Gemming*, 
{"title":"用密度功能紧密结合方法研究铅纳米结构:Slater-Koster参数","authors":"Andres Unigarro,&nbsp;Florian Günther and Sibylle Gemming*,&nbsp;","doi":"10.1021/acs.jpcc.4c0735110.1021/acs.jpcc.4c07351","DOIUrl":null,"url":null,"abstract":"<p >Intercalation in epigraphene systems is an established technique widely used to modify the electronic structure of graphene and to synthesize otherwise unstable two-dimensional layers with exotic electronic properties. However, capturing the full symmetry of the heterostructure requires a large number of atoms, rendering traditional electronic-structure approaches computationally demanding. Density-functional-based tight-binding (DFTB) offers an efficient alternative, balancing accuracy and reduced computational cost. For heavy elements such as Pb, however, proper parameters for these types of calculations are not available in the open literature. In this work, we developed a Slater–Koster parameter set for the elements Si, C, and Pb, enabling the investigation of the electronic structure of various elemental and binary solid-state structures, such as graphene, plumbene, and silicon carbide. Our results obtained with DFTB for bulk Pb and Pb/SiC structures show good qualitative agreement with pure DFT calculations. Furthermore, the inclusion of spin–orbit coupling (SOC) significantly modifies their electronic properties, aligning with DFT findings. These results underscore the capability of the optimized parameters to accurately model complex systems, allowing investigations of larger systems closer to experimental observations.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 11","pages":"5617–5624 5617–5624"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c07351","citationCount":"0","resultStr":"{\"title\":\"Investigating Pb Nanostructures with a Density-Functional Tight-Binding Approach: Slater–Koster Parameters\",\"authors\":\"Andres Unigarro,&nbsp;Florian Günther and Sibylle Gemming*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0735110.1021/acs.jpcc.4c07351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Intercalation in epigraphene systems is an established technique widely used to modify the electronic structure of graphene and to synthesize otherwise unstable two-dimensional layers with exotic electronic properties. However, capturing the full symmetry of the heterostructure requires a large number of atoms, rendering traditional electronic-structure approaches computationally demanding. Density-functional-based tight-binding (DFTB) offers an efficient alternative, balancing accuracy and reduced computational cost. For heavy elements such as Pb, however, proper parameters for these types of calculations are not available in the open literature. In this work, we developed a Slater–Koster parameter set for the elements Si, C, and Pb, enabling the investigation of the electronic structure of various elemental and binary solid-state structures, such as graphene, plumbene, and silicon carbide. Our results obtained with DFTB for bulk Pb and Pb/SiC structures show good qualitative agreement with pure DFT calculations. Furthermore, the inclusion of spin–orbit coupling (SOC) significantly modifies their electronic properties, aligning with DFT findings. These results underscore the capability of the optimized parameters to accurately model complex systems, allowing investigations of larger systems closer to experimental observations.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 11\",\"pages\":\"5617–5624 5617–5624\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c07351\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07351\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07351","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯体系中的嵌入是一种成熟的技术,广泛用于修饰石墨烯的电子结构,并合成具有奇异电子性质的不稳定二维层。然而,捕获异质结构的完全对称性需要大量的原子,使得传统的电子结构方法计算要求很高。基于密度函数的紧密绑定(DFTB)提供了一种有效的替代方案,平衡了精度和降低了计算成本。然而,对于像Pb这样的重元素,在公开的文献中没有适当的参数来进行这些类型的计算。在这项工作中,我们开发了Si、C和Pb元素的Slater-Koster参数集,从而可以研究各种元素和二元固态结构(如石墨烯、铅烯和碳化硅)的电子结构。我们用DFTB计算得到的Pb和Pb/SiC结构的结果与纯DFT计算结果在定性上一致。此外,自旋轨道耦合(SOC)的加入显著地改变了它们的电子性质,这与DFT的发现一致。这些结果强调了优化参数精确模拟复杂系统的能力,允许更接近实验观察的更大系统的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Pb Nanostructures with a Density-Functional Tight-Binding Approach: Slater–Koster Parameters

Intercalation in epigraphene systems is an established technique widely used to modify the electronic structure of graphene and to synthesize otherwise unstable two-dimensional layers with exotic electronic properties. However, capturing the full symmetry of the heterostructure requires a large number of atoms, rendering traditional electronic-structure approaches computationally demanding. Density-functional-based tight-binding (DFTB) offers an efficient alternative, balancing accuracy and reduced computational cost. For heavy elements such as Pb, however, proper parameters for these types of calculations are not available in the open literature. In this work, we developed a Slater–Koster parameter set for the elements Si, C, and Pb, enabling the investigation of the electronic structure of various elemental and binary solid-state structures, such as graphene, plumbene, and silicon carbide. Our results obtained with DFTB for bulk Pb and Pb/SiC structures show good qualitative agreement with pure DFT calculations. Furthermore, the inclusion of spin–orbit coupling (SOC) significantly modifies their electronic properties, aligning with DFT findings. These results underscore the capability of the optimized parameters to accurately model complex systems, allowing investigations of larger systems closer to experimental observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信