深度学习成像分析识别与致癌物产生相关的细菌代谢状态。

Discover imaging Pub Date : 2025-01-01 Epub Date: 2025-03-10 DOI:10.1007/s44352-025-00006-1
Maysam Orouskhani, Sarwesh Rauniyar, Norma Morella, Daniel Lachance, Samuel S Minot, Neelendu Dey
{"title":"深度学习成像分析识别与致癌物产生相关的细菌代谢状态。","authors":"Maysam Orouskhani, Sarwesh Rauniyar, Norma Morella, Daniel Lachance, Samuel S Minot, Neelendu Dey","doi":"10.1007/s44352-025-00006-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is a globally prevalent cancer. Emerging research implicates the gut microbiome in CRC pathogenesis. Bacteria such as <i>Clostridium scindens</i> can produce the carcinogenic bile acid deoxycholic acid (DCA). It is unknown whether imaging methods can differentiate DCA-producing and DCA-non-producing <i>C. scindens</i> cells.</p><p><strong>Methods: </strong>Light microscopy images of anaerobically cultured <i>C. scindens</i> in four conditions were acquired at 100× magnification using the Tissue FAX system: <i>C. scindens</i> in media alone (DCA-non-producing state), <i>C. scindens</i> in media with cholic acid (DCA-producing state), or <i>C. scindens</i> in co-culture with one of two <i>Bacteroides</i> species (intermediate DCA production states). We evaluated three approaches: whole-image classification, per-cell classification, and image segmentation-based classification. For whole-image classification, we used a custom Convolutional Neural Network (CNN), pre-trained DenseNet, pre-trained ResNet, and ResNet enhanced by integrating the Digital Images of Bacterial Species (DIBaS) dataset. For cell detection and classification, we applied thresholding (OTSU or adaptive thresholding) followed by a ResNet model. Finally, image segmentation-based classification was performed using nnU-Net.</p><p><strong>Results: </strong>For whole-image analysis, DIBaS-enhanced ResNet models achieved the best performance in distinguishing <i>C. scindens</i> states in monoculture (accuracy 0.89 ± 0.006) and in co-cultures (accuracy 0.86 ± 0.004). Per-cell analysis was optimal at a C constant value of 3, with the ResNet model achieving 62-74% accuracy for <i>C. scindens</i> states in monoculture. Segmentation-based analysis using nnU-Net resulted in Dice coefficients of 87% for <i>C. scindens</i> and 74-76% for the <i>Bacteroides</i> species.</p><p><strong>Conclusions: </strong>This study demonstrates feasibility of image-based deep learning models in identifying health-relevant gut bacterial metabolic states.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44352-025-00006-1.</p>","PeriodicalId":520461,"journal":{"name":"Discover imaging","volume":"2 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning imaging analysis to identify bacterial metabolic states associated with carcinogen production.\",\"authors\":\"Maysam Orouskhani, Sarwesh Rauniyar, Norma Morella, Daniel Lachance, Samuel S Minot, Neelendu Dey\",\"doi\":\"10.1007/s44352-025-00006-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colorectal cancer (CRC) is a globally prevalent cancer. Emerging research implicates the gut microbiome in CRC pathogenesis. Bacteria such as <i>Clostridium scindens</i> can produce the carcinogenic bile acid deoxycholic acid (DCA). It is unknown whether imaging methods can differentiate DCA-producing and DCA-non-producing <i>C. scindens</i> cells.</p><p><strong>Methods: </strong>Light microscopy images of anaerobically cultured <i>C. scindens</i> in four conditions were acquired at 100× magnification using the Tissue FAX system: <i>C. scindens</i> in media alone (DCA-non-producing state), <i>C. scindens</i> in media with cholic acid (DCA-producing state), or <i>C. scindens</i> in co-culture with one of two <i>Bacteroides</i> species (intermediate DCA production states). We evaluated three approaches: whole-image classification, per-cell classification, and image segmentation-based classification. For whole-image classification, we used a custom Convolutional Neural Network (CNN), pre-trained DenseNet, pre-trained ResNet, and ResNet enhanced by integrating the Digital Images of Bacterial Species (DIBaS) dataset. For cell detection and classification, we applied thresholding (OTSU or adaptive thresholding) followed by a ResNet model. Finally, image segmentation-based classification was performed using nnU-Net.</p><p><strong>Results: </strong>For whole-image analysis, DIBaS-enhanced ResNet models achieved the best performance in distinguishing <i>C. scindens</i> states in monoculture (accuracy 0.89 ± 0.006) and in co-cultures (accuracy 0.86 ± 0.004). Per-cell analysis was optimal at a C constant value of 3, with the ResNet model achieving 62-74% accuracy for <i>C. scindens</i> states in monoculture. Segmentation-based analysis using nnU-Net resulted in Dice coefficients of 87% for <i>C. scindens</i> and 74-76% for the <i>Bacteroides</i> species.</p><p><strong>Conclusions: </strong>This study demonstrates feasibility of image-based deep learning models in identifying health-relevant gut bacterial metabolic states.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44352-025-00006-1.</p>\",\"PeriodicalId\":520461,\"journal\":{\"name\":\"Discover imaging\",\"volume\":\"2 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44352-025-00006-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44352-025-00006-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:结直肠癌(CRC)是一种全球流行的癌症。新兴的研究表明肠道微生物群与结直肠癌的发病机制有关。像梭状芽孢杆菌这样的细菌可以产生致癌的胆汁酸脱氧胆酸(DCA)。目前尚不清楚成像方法能否区分产生dca和不产生dca的C. scindens细胞。方法:采用组织FAX系统,在100倍放大下获得四种条件下厌氧培养的scindens光镜图像:单独培养基(不产生DCA状态)、含胆酸培养基(产生DCA状态)或与两种拟杆菌(中间产生DCA状态)中的一种共培养的scindens。我们评估了三种方法:全图像分类、逐细胞分类和基于图像分割的分类。对于全图像分类,我们使用了自定义卷积神经网络(CNN)、预训练的DenseNet、预训练的ResNet,以及通过集成细菌物种数字图像(DIBaS)数据集增强的ResNet。对于细胞检测和分类,我们应用阈值法(OTSU或自适应阈值法),然后使用ResNet模型。最后,利用nnU-Net进行基于图像分割的分类。结果:在全图像分析中,dibas增强的ResNet模型在单培养(准确率0.89±0.006)和共培养(准确率0.86±0.004)中具有最佳的识别C. scindens状态的性能。当C值为3时,对单个细胞的分析是最优的,在单一培养中,ResNet模型对C. scindens状态的准确率达到62-74%。基于nnU-Net的分段分析结果显示,C. scindens的Dice系数为87%,Bacteroides的Dice系数为74-76%。结论:本研究证明了基于图像的深度学习模型在识别与健康相关的肠道细菌代谢状态方面的可行性。补充信息:在线版本包含补充资料,提供地址为10.1007/s44352-025-00006-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning imaging analysis to identify bacterial metabolic states associated with carcinogen production.

Background: Colorectal cancer (CRC) is a globally prevalent cancer. Emerging research implicates the gut microbiome in CRC pathogenesis. Bacteria such as Clostridium scindens can produce the carcinogenic bile acid deoxycholic acid (DCA). It is unknown whether imaging methods can differentiate DCA-producing and DCA-non-producing C. scindens cells.

Methods: Light microscopy images of anaerobically cultured C. scindens in four conditions were acquired at 100× magnification using the Tissue FAX system: C. scindens in media alone (DCA-non-producing state), C. scindens in media with cholic acid (DCA-producing state), or C. scindens in co-culture with one of two Bacteroides species (intermediate DCA production states). We evaluated three approaches: whole-image classification, per-cell classification, and image segmentation-based classification. For whole-image classification, we used a custom Convolutional Neural Network (CNN), pre-trained DenseNet, pre-trained ResNet, and ResNet enhanced by integrating the Digital Images of Bacterial Species (DIBaS) dataset. For cell detection and classification, we applied thresholding (OTSU or adaptive thresholding) followed by a ResNet model. Finally, image segmentation-based classification was performed using nnU-Net.

Results: For whole-image analysis, DIBaS-enhanced ResNet models achieved the best performance in distinguishing C. scindens states in monoculture (accuracy 0.89 ± 0.006) and in co-cultures (accuracy 0.86 ± 0.004). Per-cell analysis was optimal at a C constant value of 3, with the ResNet model achieving 62-74% accuracy for C. scindens states in monoculture. Segmentation-based analysis using nnU-Net resulted in Dice coefficients of 87% for C. scindens and 74-76% for the Bacteroides species.

Conclusions: This study demonstrates feasibility of image-based deep learning models in identifying health-relevant gut bacterial metabolic states.

Supplementary information: The online version contains supplementary material available at 10.1007/s44352-025-00006-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信