Sandesh J Marathe, Emily W Grey, Margaret S Bohm, Sydney C Joseph, Arvind V Ramesh, Matthew A Cottam, Kamran Idrees, Kathryn E Wellen, Alyssa H Hasty, Jeffrey C Rathmell, Liza Makowski
{"title":"肠促胰岛素三重激动剂利特鲁肽(LY3437943)缓解肥胖相关的癌症进展。","authors":"Sandesh J Marathe, Emily W Grey, Margaret S Bohm, Sydney C Joseph, Arvind V Ramesh, Matthew A Cottam, Kamran Idrees, Kathryn E Wellen, Alyssa H Hasty, Jeffrey C Rathmell, Liza Makowski","doi":"10.1038/s44324-025-00054-5","DOIUrl":null,"url":null,"abstract":"<p><p>Medical therapeutics for weight loss are changing the landscape of obesity but impacts on obesity-associated cancer remain unclear. We report that in pre-clinical models with significant retatrutide (RETA, LY3437943)-induced weight loss, pancreatic cancer engraftment was reduced, tumor onset was delayed, and progression was attenuated resulting in a 14-fold reduction in tumor volume compared to only 4-fold reduction in single agonist semaglutide-treated mice. Despite weight re-gain after RETA withdrawal, the anti-tumor benefits of RETA persisted. Remarkably, RETA-induced protection extends to a lung cancer model with 50% reduced tumor engraftment, significantly delayed tumor onset, and mitigated tumor progression, with a 17-fold reduction in tumor volume compared to controls. RETA induced immune reprogramming systemically and in the tumor microenvironment with durable anti-tumor immunity evidenced by elevated circulating IL-6, increased antigen presenting cells, reduced immunosuppressive cells, and activation of pro-inflammatory pathways. In sum, our findings suggest that patients with RETA-mediated weight loss may also benefit from reduced cancer risk and improved outcomes.</p>","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":"3 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Incretin triple agonist retatrutide (LY3437943) alleviates obesity-associated cancer progression.\",\"authors\":\"Sandesh J Marathe, Emily W Grey, Margaret S Bohm, Sydney C Joseph, Arvind V Ramesh, Matthew A Cottam, Kamran Idrees, Kathryn E Wellen, Alyssa H Hasty, Jeffrey C Rathmell, Liza Makowski\",\"doi\":\"10.1038/s44324-025-00054-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical therapeutics for weight loss are changing the landscape of obesity but impacts on obesity-associated cancer remain unclear. We report that in pre-clinical models with significant retatrutide (RETA, LY3437943)-induced weight loss, pancreatic cancer engraftment was reduced, tumor onset was delayed, and progression was attenuated resulting in a 14-fold reduction in tumor volume compared to only 4-fold reduction in single agonist semaglutide-treated mice. Despite weight re-gain after RETA withdrawal, the anti-tumor benefits of RETA persisted. Remarkably, RETA-induced protection extends to a lung cancer model with 50% reduced tumor engraftment, significantly delayed tumor onset, and mitigated tumor progression, with a 17-fold reduction in tumor volume compared to controls. RETA induced immune reprogramming systemically and in the tumor microenvironment with durable anti-tumor immunity evidenced by elevated circulating IL-6, increased antigen presenting cells, reduced immunosuppressive cells, and activation of pro-inflammatory pathways. In sum, our findings suggest that patients with RETA-mediated weight loss may also benefit from reduced cancer risk and improved outcomes.</p>\",\"PeriodicalId\":501710,\"journal\":{\"name\":\"npj Metabolic Health and Disease\",\"volume\":\"3 1\",\"pages\":\"10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Metabolic Health and Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44324-025-00054-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Metabolic Health and Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44324-025-00054-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Incretin triple agonist retatrutide (LY3437943) alleviates obesity-associated cancer progression.
Medical therapeutics for weight loss are changing the landscape of obesity but impacts on obesity-associated cancer remain unclear. We report that in pre-clinical models with significant retatrutide (RETA, LY3437943)-induced weight loss, pancreatic cancer engraftment was reduced, tumor onset was delayed, and progression was attenuated resulting in a 14-fold reduction in tumor volume compared to only 4-fold reduction in single agonist semaglutide-treated mice. Despite weight re-gain after RETA withdrawal, the anti-tumor benefits of RETA persisted. Remarkably, RETA-induced protection extends to a lung cancer model with 50% reduced tumor engraftment, significantly delayed tumor onset, and mitigated tumor progression, with a 17-fold reduction in tumor volume compared to controls. RETA induced immune reprogramming systemically and in the tumor microenvironment with durable anti-tumor immunity evidenced by elevated circulating IL-6, increased antigen presenting cells, reduced immunosuppressive cells, and activation of pro-inflammatory pathways. In sum, our findings suggest that patients with RETA-mediated weight loss may also benefit from reduced cancer risk and improved outcomes.