放射学人工智能实验室:临床最终用户放射学应用评估。

Olivier Paalvast, Merlijn Sevenster, Omar Hertgers, Hubrecht de Bliek, Victor Wijn, Vincent Buil, Jaap Knoester, Sandra Vosbergen, Hildo Lamb
{"title":"放射学人工智能实验室:临床最终用户放射学应用评估。","authors":"Olivier Paalvast, Merlijn Sevenster, Omar Hertgers, Hubrecht de Bliek, Victor Wijn, Vincent Buil, Jaap Knoester, Sandra Vosbergen, Hildo Lamb","doi":"10.1007/s10278-025-01453-2","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the approval of over 200 artificial intelligence (AI) applications for radiology in the European Union, widespread adoption in clinical practice remains limited. Current assessments of AI applications often rely on post-hoc evaluations, lacking the granularity to capture real-time radiologist-AI interactions. The purpose of the study is to realise the Radiology AI lab for real-time, objective measurement of the impact of AI applications on radiologists' workflows. We proposed the user-state sensing framework (USSF) to structure the sensing of radiologist-AI interactions in terms of personal, interactional, and contextual states. Guided by the USSF, a lab was established using three non-invasive biometric measurement techniques: eye-tracking, heart rate monitoring, and facial expression analysis. We conducted a pilot test with four radiologists of varying experience levels, who read ultra-low-dose (ULD) CT cases in (1) standard PACS and (2) manually annotated (to mimic AI) PACS workflows. Interpretation time, eye-tracking metrics, heart rate variability (HRV), and facial expressions were recorded and analysed. The Radiology AI lab was successfully realised as an initial physical iteration of the USSF at a tertiary referral centre. Radiologists participating in the pilot test read 32 ULDCT cases (mean age, 52 years ± 23 (SD); 17 male; 16 cases with abnormalities). Cases were read on average in 4.1 ± 2.2 min (standard PACS) and 3.9 ± 1.9 min (AI-annotated PACS), with no significant difference (p = 0.48). Three out of four radiologists showed significant shifts (p < 0.02) in eye-tracking metrics, including saccade duration, saccade quantity, fixation duration, fixation quantity, and pupil diameter, when using the AI-annotated workflow. These changes align with prior findings linking such metrics to increased competency and reduced cognitive load, suggesting a more efficient visual search strategy in AI-assisted interpretation. Although HRV metrics did not correlate with experience, when combined with facial expression analysis, they helped identify key moments during the pilot test. The Radiology AI lab was successfully realised, implementing personal, interactional, and contextual states of the user-state sensing framework, enabling objective analysis of radiologists' workflows, and effectively capturing relevant biometrics. Future work will focus on expanding sensing of the contextual state of the user-state sensing framework, refining baseline determination, and continuing investigation of AI-enabled tools in radiology workflows.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiology AI Lab: Evaluation of Radiology Applications with Clinical End-Users.\",\"authors\":\"Olivier Paalvast, Merlijn Sevenster, Omar Hertgers, Hubrecht de Bliek, Victor Wijn, Vincent Buil, Jaap Knoester, Sandra Vosbergen, Hildo Lamb\",\"doi\":\"10.1007/s10278-025-01453-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the approval of over 200 artificial intelligence (AI) applications for radiology in the European Union, widespread adoption in clinical practice remains limited. Current assessments of AI applications often rely on post-hoc evaluations, lacking the granularity to capture real-time radiologist-AI interactions. The purpose of the study is to realise the Radiology AI lab for real-time, objective measurement of the impact of AI applications on radiologists' workflows. We proposed the user-state sensing framework (USSF) to structure the sensing of radiologist-AI interactions in terms of personal, interactional, and contextual states. Guided by the USSF, a lab was established using three non-invasive biometric measurement techniques: eye-tracking, heart rate monitoring, and facial expression analysis. We conducted a pilot test with four radiologists of varying experience levels, who read ultra-low-dose (ULD) CT cases in (1) standard PACS and (2) manually annotated (to mimic AI) PACS workflows. Interpretation time, eye-tracking metrics, heart rate variability (HRV), and facial expressions were recorded and analysed. The Radiology AI lab was successfully realised as an initial physical iteration of the USSF at a tertiary referral centre. Radiologists participating in the pilot test read 32 ULDCT cases (mean age, 52 years ± 23 (SD); 17 male; 16 cases with abnormalities). Cases were read on average in 4.1 ± 2.2 min (standard PACS) and 3.9 ± 1.9 min (AI-annotated PACS), with no significant difference (p = 0.48). Three out of four radiologists showed significant shifts (p < 0.02) in eye-tracking metrics, including saccade duration, saccade quantity, fixation duration, fixation quantity, and pupil diameter, when using the AI-annotated workflow. These changes align with prior findings linking such metrics to increased competency and reduced cognitive load, suggesting a more efficient visual search strategy in AI-assisted interpretation. Although HRV metrics did not correlate with experience, when combined with facial expression analysis, they helped identify key moments during the pilot test. The Radiology AI lab was successfully realised, implementing personal, interactional, and contextual states of the user-state sensing framework, enabling objective analysis of radiologists' workflows, and effectively capturing relevant biometrics. Future work will focus on expanding sensing of the contextual state of the user-state sensing framework, refining baseline determination, and continuing investigation of AI-enabled tools in radiology workflows.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01453-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01453-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管欧盟批准了200多个人工智能(AI)应用于放射学,但在临床实践中的广泛采用仍然有限。目前对人工智能应用的评估通常依赖于事后评估,缺乏捕捉实时放射科医生与人工智能交互的粒度。该研究的目的是实现放射科人工智能实验室实时、客观地测量人工智能应用对放射科医生工作流程的影响。我们提出了用户状态感知框架(USSF)来构建放射科医生-人工智能交互的感知,包括个人状态、交互状态和上下文状态。在美国科学基金会的指导下,建立了一个实验室,使用三种非侵入性生物测量技术:眼球追踪、心率监测和面部表情分析。我们与四名不同经验水平的放射科医生进行了试点测试,他们在(1)标准PACS和(2)人工注释(模仿人工智能)PACS工作流程中阅读超低剂量(ULD) CT病例。口译时间、眼动追踪指标、心率变异性(HRV)和面部表情被记录和分析。放射学人工智能实验室成功地实现了作为美国sf在三级转诊中心的初始物理迭代。参与先导试验的放射科医生阅读了32例ULDCT病例(平均年龄52岁±23岁(SD);17岁男性;异常16例)。患者平均阅读时间(标准PACS)为4.1±2.2 min, ai注释PACS为3.9±1.9 min,差异无统计学意义(p = 0.48)。四分之三的放射科医生表现出显著的变化(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiology AI Lab: Evaluation of Radiology Applications with Clinical End-Users.

Despite the approval of over 200 artificial intelligence (AI) applications for radiology in the European Union, widespread adoption in clinical practice remains limited. Current assessments of AI applications often rely on post-hoc evaluations, lacking the granularity to capture real-time radiologist-AI interactions. The purpose of the study is to realise the Radiology AI lab for real-time, objective measurement of the impact of AI applications on radiologists' workflows. We proposed the user-state sensing framework (USSF) to structure the sensing of radiologist-AI interactions in terms of personal, interactional, and contextual states. Guided by the USSF, a lab was established using three non-invasive biometric measurement techniques: eye-tracking, heart rate monitoring, and facial expression analysis. We conducted a pilot test with four radiologists of varying experience levels, who read ultra-low-dose (ULD) CT cases in (1) standard PACS and (2) manually annotated (to mimic AI) PACS workflows. Interpretation time, eye-tracking metrics, heart rate variability (HRV), and facial expressions were recorded and analysed. The Radiology AI lab was successfully realised as an initial physical iteration of the USSF at a tertiary referral centre. Radiologists participating in the pilot test read 32 ULDCT cases (mean age, 52 years ± 23 (SD); 17 male; 16 cases with abnormalities). Cases were read on average in 4.1 ± 2.2 min (standard PACS) and 3.9 ± 1.9 min (AI-annotated PACS), with no significant difference (p = 0.48). Three out of four radiologists showed significant shifts (p < 0.02) in eye-tracking metrics, including saccade duration, saccade quantity, fixation duration, fixation quantity, and pupil diameter, when using the AI-annotated workflow. These changes align with prior findings linking such metrics to increased competency and reduced cognitive load, suggesting a more efficient visual search strategy in AI-assisted interpretation. Although HRV metrics did not correlate with experience, when combined with facial expression analysis, they helped identify key moments during the pilot test. The Radiology AI lab was successfully realised, implementing personal, interactional, and contextual states of the user-state sensing framework, enabling objective analysis of radiologists' workflows, and effectively capturing relevant biometrics. Future work will focus on expanding sensing of the contextual state of the user-state sensing framework, refining baseline determination, and continuing investigation of AI-enabled tools in radiology workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信