连续体模型的动态块激活框架。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nature computational science Pub Date : 2025-04-01 Epub Date: 2025-03-17 DOI:10.1038/s43588-025-00780-2
Ruoyao Zhang, Yang Xia
{"title":"连续体模型的动态块激活框架。","authors":"Ruoyao Zhang, Yang Xia","doi":"10.1038/s43588-025-00780-2","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient utilization of massively parallel computing resources is crucial for advancing scientific understanding through complex simulations. However, existing adaptive methods often face challenges in implementation complexity and scalability on modern parallel hardware. Here we present dynamic block activation (DBA), an acceleration framework that can be applied to a broad range of continuum simulations by strategically allocating resources on the basis of the dynamic features of the physical model. By exploiting the hierarchical structure of parallel hardware and dynamically activating and deactivating computation blocks, DBA optimizes performance while maintaining accuracy. We demonstrate DBA's effectiveness through solving representative models spanning multiple scientific fields, including materials science, biophysics and fluid dynamics, achieving 216-816 central processing unit core-equivalent speedups on a single graphics processing unit (GPU), up to fivefold acceleration compared with highly optimized GPU code and nearly perfect scalability up to 32 GPUs. By addressing common challenges, such as divergent memory access, and reducing programming burden, DBA offers a promising approach to fully leverage massively parallel systems across multiple scientific computing domains.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":"345-354"},"PeriodicalIF":12.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic block activation framework for continuum models.\",\"authors\":\"Ruoyao Zhang, Yang Xia\",\"doi\":\"10.1038/s43588-025-00780-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient utilization of massively parallel computing resources is crucial for advancing scientific understanding through complex simulations. However, existing adaptive methods often face challenges in implementation complexity and scalability on modern parallel hardware. Here we present dynamic block activation (DBA), an acceleration framework that can be applied to a broad range of continuum simulations by strategically allocating resources on the basis of the dynamic features of the physical model. By exploiting the hierarchical structure of parallel hardware and dynamically activating and deactivating computation blocks, DBA optimizes performance while maintaining accuracy. We demonstrate DBA's effectiveness through solving representative models spanning multiple scientific fields, including materials science, biophysics and fluid dynamics, achieving 216-816 central processing unit core-equivalent speedups on a single graphics processing unit (GPU), up to fivefold acceleration compared with highly optimized GPU code and nearly perfect scalability up to 32 GPUs. By addressing common challenges, such as divergent memory access, and reducing programming burden, DBA offers a promising approach to fully leverage massively parallel systems across multiple scientific computing domains.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"345-354\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00780-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00780-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

大规模并行计算资源的有效利用对于通过复杂模拟推进科学理解至关重要。然而,现有的自适应方法在现代并行硬件上往往面临实现复杂性和可扩展性的挑战。在这里,我们提出了动态块激活(DBA),这是一种加速框架,可以通过基于物理模型的动态特征战略性地分配资源来应用于广泛的连续体模拟。通过利用并行硬件的层次结构和动态激活和停用计算块,DBA在保持准确性的同时优化了性能。我们通过解决跨越多个科学领域的代表性模型来证明DBA的有效性,包括材料科学,生物物理学和流体动力学,在单个图形处理单元(GPU)上实现216-816中央处理单元核心等效速度,与高度优化的GPU代码相比加速高达五倍,并且几乎完美的可扩展性高达32个GPU。通过解决常见的挑战(如分散的内存访问)和减少编程负担,DBA提供了一种很有前途的方法来充分利用跨多个科学计算领域的大规模并行系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic block activation framework for continuum models.

Efficient utilization of massively parallel computing resources is crucial for advancing scientific understanding through complex simulations. However, existing adaptive methods often face challenges in implementation complexity and scalability on modern parallel hardware. Here we present dynamic block activation (DBA), an acceleration framework that can be applied to a broad range of continuum simulations by strategically allocating resources on the basis of the dynamic features of the physical model. By exploiting the hierarchical structure of parallel hardware and dynamically activating and deactivating computation blocks, DBA optimizes performance while maintaining accuracy. We demonstrate DBA's effectiveness through solving representative models spanning multiple scientific fields, including materials science, biophysics and fluid dynamics, achieving 216-816 central processing unit core-equivalent speedups on a single graphics processing unit (GPU), up to fivefold acceleration compared with highly optimized GPU code and nearly perfect scalability up to 32 GPUs. By addressing common challenges, such as divergent memory access, and reducing programming burden, DBA offers a promising approach to fully leverage massively parallel systems across multiple scientific computing domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信