Welly:从微孔板数据中可视化生长曲线的网络工具。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-04 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf038
Felix Meier, Tom Williams, Ian Paulsen
{"title":"Welly:从微孔板数据中可视化生长曲线的网络工具。","authors":"Felix Meier, Tom Williams, Ian Paulsen","doi":"10.1093/bioadv/vbaf038","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Welly is a web-based tool designed to simplify the visualization and analysis of growth curves from 96- and 384-well plates, addressing the limitations of existing commercial and coding-based solutions. Users can upload plate reader data in CSV or Excel format, easily select sample names and replicates and Welly generates interactive growth curves displaying the mean and standard deviation of triplicates. Additional features include heat map visualizations of maximum values, and downloadable interactive graphs of publication-quality figures and statistics files containing area under curve and max growth rate value of replicates.</p><p><strong>Availability and implementation: </strong>Welly is freely available at https://synbioexplorer.pythonanywhere.com, providing an easy-to-use interface accessible to all. All the code is publicly available at the github repository https://github.com/SynBioExplorer/Welly under the MIT license. The website will remain freely accessible for at least 2 years post publication, likely longer.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf038"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908640/pdf/","citationCount":"0","resultStr":"{\"title\":\"Welly: a web-tool for visualizing growth curves from microplate data.\",\"authors\":\"Felix Meier, Tom Williams, Ian Paulsen\",\"doi\":\"10.1093/bioadv/vbaf038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Welly is a web-based tool designed to simplify the visualization and analysis of growth curves from 96- and 384-well plates, addressing the limitations of existing commercial and coding-based solutions. Users can upload plate reader data in CSV or Excel format, easily select sample names and replicates and Welly generates interactive growth curves displaying the mean and standard deviation of triplicates. Additional features include heat map visualizations of maximum values, and downloadable interactive graphs of publication-quality figures and statistics files containing area under curve and max growth rate value of replicates.</p><p><strong>Availability and implementation: </strong>Welly is freely available at https://synbioexplorer.pythonanywhere.com, providing an easy-to-use interface accessible to all. All the code is publicly available at the github repository https://github.com/SynBioExplorer/Welly under the MIT license. The website will remain freely accessible for at least 2 years post publication, likely longer.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf038\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908640/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Welly是一款基于网络的工具,旨在简化96孔和384孔板生长曲线的可视化和分析,解决了现有商业和基于编码的解决方案的局限性。用户可以上传CSV或Excel格式的车牌阅读器数据,轻松选择样本名称和重复,Welly生成交互式增长曲线,显示三个重复的平均值和标准差。其他功能包括最大值的热图可视化,以及可下载的出版质量数字和统计文件的交互式图表,其中包含曲线下面积和复制的最大增长率值。可用性和实现:Welly可以在https://synbioexplorer.pythonanywhere.com上免费获得,它提供了一个易于使用的界面。在MIT许可下,所有代码都可以在github存储库https://github.com/SynBioExplorer/Welly上公开获得。该网站将在出版后至少2年内保持免费访问,可能更长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Welly: a web-tool for visualizing growth curves from microplate data.

Summary: Welly is a web-based tool designed to simplify the visualization and analysis of growth curves from 96- and 384-well plates, addressing the limitations of existing commercial and coding-based solutions. Users can upload plate reader data in CSV or Excel format, easily select sample names and replicates and Welly generates interactive growth curves displaying the mean and standard deviation of triplicates. Additional features include heat map visualizations of maximum values, and downloadable interactive graphs of publication-quality figures and statistics files containing area under curve and max growth rate value of replicates.

Availability and implementation: Welly is freely available at https://synbioexplorer.pythonanywhere.com, providing an easy-to-use interface accessible to all. All the code is publicly available at the github repository https://github.com/SynBioExplorer/Welly under the MIT license. The website will remain freely accessible for at least 2 years post publication, likely longer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信