乳腺癌预后的糖酵解和糖异生相关模型。

IF 2.2 4区 医学 Q3 ONCOLOGY
Cancer Biomarkers Pub Date : 2024-12-01 Epub Date: 2025-02-05 DOI:10.1177/18758592241296278
Penglu Yang, Xiong Jiao
{"title":"乳腺癌预后的糖酵解和糖异生相关模型。","authors":"Penglu Yang, Xiong Jiao","doi":"10.1177/18758592241296278","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundBreast cancer is a malignant tumor with high morbidity and mortality, which seriously endangers the health of women around the world. Biomarker-based exploration will be effective for better diagnosis, prediction and targeted therapy.ObjectiveTo construct biomarker models related to glycolysis and gluconeogenesis in breast cancer.MethodsThe gene expression of 932 breast cancer patients in the Cancer Genome Atlas (TCGA) database was analyzed by Gene Set Variation Analysis (GSVA) using glycolysis and gluconeogenesis-related pathways. Differential expression genes were searched for by the T-test. Univariate Cox proportional hazards model (COX) regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Multivariate COX regression were used to find clinically significant genes for prognostic survival. After that, the constructed gene signature was externally validated through the Gene Expression Omnibus (GEO). Finally, a nomogram was constructed to predict the survival of patients. In addition, analyzing the role of biomarkers in pan-cancer.ResultsA risk scoring model associated with glycolysis and gluconeogenesis was developed and validated. A nomogram was created to predict 2-, 3-, and 5- survival.ConclusionsThe predictive model accurately predicted the prognosis of breast cancer patients.</p>","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":"41 3-4","pages":"18758592241296278"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Glycolysis and gluconeogenesis-related model for breast cancer prognosis.\",\"authors\":\"Penglu Yang, Xiong Jiao\",\"doi\":\"10.1177/18758592241296278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundBreast cancer is a malignant tumor with high morbidity and mortality, which seriously endangers the health of women around the world. Biomarker-based exploration will be effective for better diagnosis, prediction and targeted therapy.ObjectiveTo construct biomarker models related to glycolysis and gluconeogenesis in breast cancer.MethodsThe gene expression of 932 breast cancer patients in the Cancer Genome Atlas (TCGA) database was analyzed by Gene Set Variation Analysis (GSVA) using glycolysis and gluconeogenesis-related pathways. Differential expression genes were searched for by the T-test. Univariate Cox proportional hazards model (COX) regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Multivariate COX regression were used to find clinically significant genes for prognostic survival. After that, the constructed gene signature was externally validated through the Gene Expression Omnibus (GEO). Finally, a nomogram was constructed to predict the survival of patients. In addition, analyzing the role of biomarkers in pan-cancer.ResultsA risk scoring model associated with glycolysis and gluconeogenesis was developed and validated. A nomogram was created to predict 2-, 3-, and 5- survival.ConclusionsThe predictive model accurately predicted the prognosis of breast cancer patients.</p>\",\"PeriodicalId\":56320,\"journal\":{\"name\":\"Cancer Biomarkers\",\"volume\":\"41 3-4\",\"pages\":\"18758592241296278\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biomarkers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/18758592241296278\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/18758592241296278","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是一种发病率和死亡率高的恶性肿瘤,严重危害着全世界妇女的健康。基于生物标志物的探索将有助于更好的诊断、预测和靶向治疗。目的建立与乳腺癌糖酵解和糖异生相关的生物标志物模型。方法采用基因集变异分析(GSVA)方法,通过糖酵解和糖异生相关途径,分析932例乳腺癌患者在癌症基因组图谱(TCGA)数据库中的基因表达。采用t检验寻找差异表达基因。采用单因素Cox比例风险模型(Cox)回归、最小绝对收缩和选择算子(LASSO)回归和多因素Cox回归寻找影响预后生存的临床显著基因。然后,通过基因表达图谱(gene Expression Omnibus, GEO)对构建的基因特征进行外部验证。最后,构建nomogram来预测患者的生存期。此外,分析生物标志物在泛癌中的作用。结果建立并验证了糖酵解和糖异生相关风险评分模型。创建了一个nomogram来预测2、3、5期的生存率。结论该预测模型能准确预测乳腺癌患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Glycolysis and gluconeogenesis-related model for breast cancer prognosis.

BackgroundBreast cancer is a malignant tumor with high morbidity and mortality, which seriously endangers the health of women around the world. Biomarker-based exploration will be effective for better diagnosis, prediction and targeted therapy.ObjectiveTo construct biomarker models related to glycolysis and gluconeogenesis in breast cancer.MethodsThe gene expression of 932 breast cancer patients in the Cancer Genome Atlas (TCGA) database was analyzed by Gene Set Variation Analysis (GSVA) using glycolysis and gluconeogenesis-related pathways. Differential expression genes were searched for by the T-test. Univariate Cox proportional hazards model (COX) regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Multivariate COX regression were used to find clinically significant genes for prognostic survival. After that, the constructed gene signature was externally validated through the Gene Expression Omnibus (GEO). Finally, a nomogram was constructed to predict the survival of patients. In addition, analyzing the role of biomarkers in pan-cancer.ResultsA risk scoring model associated with glycolysis and gluconeogenesis was developed and validated. A nomogram was created to predict 2-, 3-, and 5- survival.ConclusionsThe predictive model accurately predicted the prognosis of breast cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biomarkers
Cancer Biomarkers ONCOLOGY-
CiteScore
5.20
自引率
3.20%
发文量
195
审稿时长
3 months
期刊介绍: Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion. The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信