Magali Araujo, Erica Stewart, Yang Zhao, Estatira Sepehr, Cory Vaught, Clara Erice, Robert L. Sprando
{"title":"体外Caco-2细胞对富含cbd的乙醇大麻提取物中5种大麻素的肠道吸收的评估。","authors":"Magali Araujo, Erica Stewart, Yang Zhao, Estatira Sepehr, Cory Vaught, Clara Erice, Robert L. Sprando","doi":"10.1016/j.tiv.2025.106053","DOIUrl":null,"url":null,"abstract":"<div><div>Cannabinoids are highly lipophilic constituents of the hemp plant, which is present in several products intended for consumption. While cannabidiol (CBD) effects to humans have been extensively investigated, there is limited information on other minor cannabinoids. CBD oral bioavailability is low but increases with food and high-fat intake. We used Caco-2 cells <em>in vitro</em> to assess intestinal absorption of five cannabinoids (CBD, CBC, CBG, CBN, and CBDV) present in a CBD-rich hemp extract. We used a fed-state simulated intestinal fluid (Fessif) for dissolution of cannabinoids. Cannabinoids did not alter Caco-2 monolayer integrity. Except for CBC, recovery of cannabinoids decreased significantly after 90-minute incubation, compared to 60-minute incubation. No measurable cannabinoids were identified in the bottom chambers. Recovery of CBD, CBC, CBG and CBN after incubation with hemp extract or cannabinoid mix containing 30 μM CBD was unchanged, but CBDV recovery decreased. With hemp extract or a mix containing 10 μM CBD, recovery of CBD and CBC did not change, CBG recovery was lower (80–82 %), and CBN and CBDV were unquantifiable. This study highlights the challenges of evaluating permeability of cannabinoids by Caco-2 cells to predict intestinal absorption, including the physicochemical properties of these compounds, incubation time and cell properties.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"106 ","pages":"Article 106053"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of intestinal absorption of five cannabinoids from an ethanolic CBD-rich hemp extract using Caco-2 cells in vitro\",\"authors\":\"Magali Araujo, Erica Stewart, Yang Zhao, Estatira Sepehr, Cory Vaught, Clara Erice, Robert L. Sprando\",\"doi\":\"10.1016/j.tiv.2025.106053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cannabinoids are highly lipophilic constituents of the hemp plant, which is present in several products intended for consumption. While cannabidiol (CBD) effects to humans have been extensively investigated, there is limited information on other minor cannabinoids. CBD oral bioavailability is low but increases with food and high-fat intake. We used Caco-2 cells <em>in vitro</em> to assess intestinal absorption of five cannabinoids (CBD, CBC, CBG, CBN, and CBDV) present in a CBD-rich hemp extract. We used a fed-state simulated intestinal fluid (Fessif) for dissolution of cannabinoids. Cannabinoids did not alter Caco-2 monolayer integrity. Except for CBC, recovery of cannabinoids decreased significantly after 90-minute incubation, compared to 60-minute incubation. No measurable cannabinoids were identified in the bottom chambers. Recovery of CBD, CBC, CBG and CBN after incubation with hemp extract or cannabinoid mix containing 30 μM CBD was unchanged, but CBDV recovery decreased. With hemp extract or a mix containing 10 μM CBD, recovery of CBD and CBC did not change, CBG recovery was lower (80–82 %), and CBN and CBDV were unquantifiable. This study highlights the challenges of evaluating permeability of cannabinoids by Caco-2 cells to predict intestinal absorption, including the physicochemical properties of these compounds, incubation time and cell properties.</div></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"106 \",\"pages\":\"Article 106053\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233325000475\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233325000475","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Assessment of intestinal absorption of five cannabinoids from an ethanolic CBD-rich hemp extract using Caco-2 cells in vitro
Cannabinoids are highly lipophilic constituents of the hemp plant, which is present in several products intended for consumption. While cannabidiol (CBD) effects to humans have been extensively investigated, there is limited information on other minor cannabinoids. CBD oral bioavailability is low but increases with food and high-fat intake. We used Caco-2 cells in vitro to assess intestinal absorption of five cannabinoids (CBD, CBC, CBG, CBN, and CBDV) present in a CBD-rich hemp extract. We used a fed-state simulated intestinal fluid (Fessif) for dissolution of cannabinoids. Cannabinoids did not alter Caco-2 monolayer integrity. Except for CBC, recovery of cannabinoids decreased significantly after 90-minute incubation, compared to 60-minute incubation. No measurable cannabinoids were identified in the bottom chambers. Recovery of CBD, CBC, CBG and CBN after incubation with hemp extract or cannabinoid mix containing 30 μM CBD was unchanged, but CBDV recovery decreased. With hemp extract or a mix containing 10 μM CBD, recovery of CBD and CBC did not change, CBG recovery was lower (80–82 %), and CBN and CBDV were unquantifiable. This study highlights the challenges of evaluating permeability of cannabinoids by Caco-2 cells to predict intestinal absorption, including the physicochemical properties of these compounds, incubation time and cell properties.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.