应用医学影像检测和分割颅内未破裂动脉瘤的人工智能方法的系统综述。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mario Mata-Castillo, Andrea Hernández-Villegas, Nelly Gordillo-Castillo, José Díaz-Román
{"title":"应用医学影像检测和分割颅内未破裂动脉瘤的人工智能方法的系统综述。","authors":"Mario Mata-Castillo, Andrea Hernández-Villegas, Nelly Gordillo-Castillo, José Díaz-Román","doi":"10.1007/s11517-025-03345-7","DOIUrl":null,"url":null,"abstract":"<p><p>Unruptured intracranial aneurysms are protuberances that appear in cerebral arteries, and their diagnostic evaluation can be a complex, time-consuming, and exhaustive task. In recent years, computer-aided systems have been developed to improve diagnostic processes. Although the proposed methods have already been reviewed to assess their suitability for clinical use, the segmentation methods have not been reviewed in detail, nor has there been a standardized way to compare segmentation and detection tasks. A systematic review was conducted to examine the technical and methodological factors contributing to this limitation. The analysis encompassed 49 studies conducted between 2019 and 2023 that utilized artificial intelligence methods and any medical imaging modality for the detection or segmentation of intracranial aneurysms. Most of the included studies focused exclusively on detection (57%), magnetic resonance angiography was the predominant imaging modality (47%), and the methodologies generally used 3D imaging as the input (71%). The reported sensitivities ranged from 0.68 to 0.90, specificities from 0.18 to 1.0, false positives per case from 0.18 to 13.8, and the Dice similarity coefficient from 0.53 to 0.98. Variations in aneurysm size were found to have a substantial impact on system performance. Studies were evaluated using a diagnostic accuracy study quality assessment tool, which revealed significant concerns regarding applicability. These concerns primarily stem from the poor reproducibility and inconsistent reporting of metrics. Recommendations for reporting outcomes were made to compare procedures across different types of imaging and tasks.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic review of artificial intelligence methods for detection and segmentation of unruptured intracranial aneurysms using medical imaging.\",\"authors\":\"Mario Mata-Castillo, Andrea Hernández-Villegas, Nelly Gordillo-Castillo, José Díaz-Román\",\"doi\":\"10.1007/s11517-025-03345-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unruptured intracranial aneurysms are protuberances that appear in cerebral arteries, and their diagnostic evaluation can be a complex, time-consuming, and exhaustive task. In recent years, computer-aided systems have been developed to improve diagnostic processes. Although the proposed methods have already been reviewed to assess their suitability for clinical use, the segmentation methods have not been reviewed in detail, nor has there been a standardized way to compare segmentation and detection tasks. A systematic review was conducted to examine the technical and methodological factors contributing to this limitation. The analysis encompassed 49 studies conducted between 2019 and 2023 that utilized artificial intelligence methods and any medical imaging modality for the detection or segmentation of intracranial aneurysms. Most of the included studies focused exclusively on detection (57%), magnetic resonance angiography was the predominant imaging modality (47%), and the methodologies generally used 3D imaging as the input (71%). The reported sensitivities ranged from 0.68 to 0.90, specificities from 0.18 to 1.0, false positives per case from 0.18 to 13.8, and the Dice similarity coefficient from 0.53 to 0.98. Variations in aneurysm size were found to have a substantial impact on system performance. Studies were evaluated using a diagnostic accuracy study quality assessment tool, which revealed significant concerns regarding applicability. These concerns primarily stem from the poor reproducibility and inconsistent reporting of metrics. Recommendations for reporting outcomes were made to compare procedures across different types of imaging and tasks.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03345-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03345-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

未破裂的颅内动脉瘤是出现在脑动脉中的突起,其诊断评估可能是一项复杂、耗时和详尽的任务。近年来,计算机辅助系统的发展改善了诊断过程。虽然已经对提出的方法进行了审查,以评估其临床使用的适用性,但尚未对分割方法进行详细审查,也没有标准化的方法来比较分割和检测任务。进行了系统的审查,以检查造成这种限制的技术和方法因素。该分析包括2019年至2023年期间进行的49项研究,这些研究利用人工智能方法和任何医学成像方式来检测或分割颅内动脉瘤。大多数纳入的研究只关注检测(57%),磁共振血管造影是主要的成像方式(47%),方法通常使用3D成像作为输入(71%)。报告的敏感性范围为0.68 ~ 0.90,特异性范围为0.18 ~ 1.0,每例假阳性范围为0.18 ~ 13.8,Dice相似系数为0.53 ~ 0.98。动脉瘤大小的变化被发现对系统性能有实质性的影响。使用诊断准确性研究质量评估工具对研究进行评估,该工具显示了对适用性的重大关注。这些问题主要源于较差的可再现性和不一致的指标报告。提出了报告结果的建议,以比较不同类型成像和任务的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic review of artificial intelligence methods for detection and segmentation of unruptured intracranial aneurysms using medical imaging.

Unruptured intracranial aneurysms are protuberances that appear in cerebral arteries, and their diagnostic evaluation can be a complex, time-consuming, and exhaustive task. In recent years, computer-aided systems have been developed to improve diagnostic processes. Although the proposed methods have already been reviewed to assess their suitability for clinical use, the segmentation methods have not been reviewed in detail, nor has there been a standardized way to compare segmentation and detection tasks. A systematic review was conducted to examine the technical and methodological factors contributing to this limitation. The analysis encompassed 49 studies conducted between 2019 and 2023 that utilized artificial intelligence methods and any medical imaging modality for the detection or segmentation of intracranial aneurysms. Most of the included studies focused exclusively on detection (57%), magnetic resonance angiography was the predominant imaging modality (47%), and the methodologies generally used 3D imaging as the input (71%). The reported sensitivities ranged from 0.68 to 0.90, specificities from 0.18 to 1.0, false positives per case from 0.18 to 13.8, and the Dice similarity coefficient from 0.53 to 0.98. Variations in aneurysm size were found to have a substantial impact on system performance. Studies were evaluated using a diagnostic accuracy study quality assessment tool, which revealed significant concerns regarding applicability. These concerns primarily stem from the poor reproducibility and inconsistent reporting of metrics. Recommendations for reporting outcomes were made to compare procedures across different types of imaging and tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信