非比例风险下时间-事件数据的自适应权重选择。

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Moritz Fabian Danzer, Ina Dormuth
{"title":"非比例风险下时间-事件数据的自适应权重选择。","authors":"Moritz Fabian Danzer, Ina Dormuth","doi":"10.1002/sim.70045","DOIUrl":null,"url":null,"abstract":"<p><p>When planning a clinical trial for a time-to-event endpoint, we require an estimated effect size and need to consider the type of effect. Usually, an effect of proportional hazards is assumed with the hazard ratio as the corresponding effect measure. Thus, the standard procedure for survival data is generally based on a single-stage log-rank test. Knowing that the assumption of proportional hazards is often violated and sufficient knowledge to derive reasonable effect sizes is usually unavailable, such an approach is relatively rigid. We introduce a more flexible procedure by combining two methods designed to be more robust in case we have little to no prior knowledge. First, we employ a more flexible adaptive multi-stage design instead of a single-stage design. Second, we apply combination-type tests in the first stage of our suggested procedure to benefit from their robustness under uncertainty about the deviation pattern. We can then use the data collected during this period to choose a more specific single-weighted log-rank test for the subsequent stages. In this step, we employ Royston-Parmar spline models to extrapolate the survival curves to make a reasonable decision. Based on a real-world data example, we show that our approach can save a trial that would otherwise end with an inconclusive result. Additionally, our simulation studies demonstrate a sufficient power performance while maintaining more flexibility.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 6","pages":"e70045"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive Weight Selection for Time-To-Event Data Under Non-Proportional Hazards.\",\"authors\":\"Moritz Fabian Danzer, Ina Dormuth\",\"doi\":\"10.1002/sim.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When planning a clinical trial for a time-to-event endpoint, we require an estimated effect size and need to consider the type of effect. Usually, an effect of proportional hazards is assumed with the hazard ratio as the corresponding effect measure. Thus, the standard procedure for survival data is generally based on a single-stage log-rank test. Knowing that the assumption of proportional hazards is often violated and sufficient knowledge to derive reasonable effect sizes is usually unavailable, such an approach is relatively rigid. We introduce a more flexible procedure by combining two methods designed to be more robust in case we have little to no prior knowledge. First, we employ a more flexible adaptive multi-stage design instead of a single-stage design. Second, we apply combination-type tests in the first stage of our suggested procedure to benefit from their robustness under uncertainty about the deviation pattern. We can then use the data collected during this period to choose a more specific single-weighted log-rank test for the subsequent stages. In this step, we employ Royston-Parmar spline models to extrapolate the survival curves to make a reasonable decision. Based on a real-world data example, we show that our approach can save a trial that would otherwise end with an inconclusive result. Additionally, our simulation studies demonstrate a sufficient power performance while maintaining more flexibility.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 6\",\"pages\":\"e70045\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.70045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当为事件时间终点计划临床试验时,我们需要估计效应大小并需要考虑效应类型。通常以风险比作为相应的影响度量来假设成比例风险的影响。因此,生存数据的标准程序通常基于单阶段对数秩检验。由于比例风险的假设经常被违反,并且通常无法获得足够的知识来得出合理的效应大小,因此这种方法相对僵化。我们引入了一个更灵活的过程,通过结合两种方法来设计更健壮的情况下,我们有很少或没有先验知识。首先,我们采用了更灵活的自适应多级设计,而不是单级设计。其次,我们在我们建议的程序的第一阶段应用组合型测试,以受益于它们在偏差模式不确定性下的鲁棒性。然后,我们可以使用在此期间收集的数据为后续阶段选择更具体的单加权对数秩检验。在这一步中,我们使用Royston-Parmar样条模型来外推生存曲线以做出合理的决策。基于一个真实世界的数据示例,我们表明我们的方法可以节省试验,否则将以不确定的结果结束。此外,我们的仿真研究表明,在保持更大灵活性的同时,具有足够的功率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Weight Selection for Time-To-Event Data Under Non-Proportional Hazards.

When planning a clinical trial for a time-to-event endpoint, we require an estimated effect size and need to consider the type of effect. Usually, an effect of proportional hazards is assumed with the hazard ratio as the corresponding effect measure. Thus, the standard procedure for survival data is generally based on a single-stage log-rank test. Knowing that the assumption of proportional hazards is often violated and sufficient knowledge to derive reasonable effect sizes is usually unavailable, such an approach is relatively rigid. We introduce a more flexible procedure by combining two methods designed to be more robust in case we have little to no prior knowledge. First, we employ a more flexible adaptive multi-stage design instead of a single-stage design. Second, we apply combination-type tests in the first stage of our suggested procedure to benefit from their robustness under uncertainty about the deviation pattern. We can then use the data collected during this period to choose a more specific single-weighted log-rank test for the subsequent stages. In this step, we employ Royston-Parmar spline models to extrapolate the survival curves to make a reasonable decision. Based on a real-world data example, we show that our approach can save a trial that would otherwise end with an inconclusive result. Additionally, our simulation studies demonstrate a sufficient power performance while maintaining more flexibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信