Chi L. Nguyen, Abigail R. Tramell, Jordan O. Norman, Jan Abendroth, Kayleigh F. Barrett, Justin K. Craig, Thomas E. Edwards, Donald D. Lorimer, Wesley C. Van Voorhis, Krystle J. McLaughlin
{"title":"嗜肺军团菌dutp酶的结构特征。","authors":"Chi L. Nguyen, Abigail R. Tramell, Jordan O. Norman, Jan Abendroth, Kayleigh F. Barrett, Justin K. Craig, Thomas E. Edwards, Donald D. Lorimer, Wesley C. Van Voorhis, Krystle J. McLaughlin","doi":"10.1107/S2053230X25001815","DOIUrl":null,"url":null,"abstract":"<p>Cellular deoxyuridine 5′-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PP<sub>i</sub>). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by <i>Legionella pneumophila</i> serogroup 1. Increased characterization of the <i>L. pneumophila</i> proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in <i>L. pneumophila</i>, including dUTPase. Here, we present analysis of two crystal structures of <i>L. pneumophila</i> dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 4","pages":"155-162"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of dUTPase from Legionella pneumophila\",\"authors\":\"Chi L. Nguyen, Abigail R. Tramell, Jordan O. Norman, Jan Abendroth, Kayleigh F. Barrett, Justin K. Craig, Thomas E. Edwards, Donald D. Lorimer, Wesley C. Van Voorhis, Krystle J. McLaughlin\",\"doi\":\"10.1107/S2053230X25001815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular deoxyuridine 5′-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PP<sub>i</sub>). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by <i>Legionella pneumophila</i> serogroup 1. Increased characterization of the <i>L. pneumophila</i> proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in <i>L. pneumophila</i>, including dUTPase. Here, we present analysis of two crystal structures of <i>L. pneumophila</i> dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.</p>\",\"PeriodicalId\":7029,\"journal\":{\"name\":\"Acta crystallographica. Section F, Structural biology communications\",\"volume\":\"81 4\",\"pages\":\"155-162\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section F, Structural biology communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25001815\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25001815","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Structural characterization of dUTPase from Legionella pneumophila
Cellular deoxyuridine 5′-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PPi). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by Legionella pneumophila serogroup 1. Increased characterization of the L. pneumophila proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in L. pneumophila, including dUTPase. Here, we present analysis of two crystal structures of L. pneumophila dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.