嗜肺军团菌dutp酶的结构特征。

IF 1.1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Chi L. Nguyen, Abigail R. Tramell, Jordan O. Norman, Jan Abendroth, Kayleigh F. Barrett, Justin K. Craig, Thomas E. Edwards, Donald D. Lorimer, Wesley C. Van Voorhis, Krystle J. McLaughlin
{"title":"嗜肺军团菌dutp酶的结构特征。","authors":"Chi L. Nguyen,&nbsp;Abigail R. Tramell,&nbsp;Jordan O. Norman,&nbsp;Jan Abendroth,&nbsp;Kayleigh F. Barrett,&nbsp;Justin K. Craig,&nbsp;Thomas E. Edwards,&nbsp;Donald D. Lorimer,&nbsp;Wesley C. Van Voorhis,&nbsp;Krystle J. McLaughlin","doi":"10.1107/S2053230X25001815","DOIUrl":null,"url":null,"abstract":"<p>Cellular deoxyuridine 5′-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PP<sub>i</sub>). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by <i>Legionella pneumophila</i> serogroup 1. Increased characterization of the <i>L. pneumophila</i> proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in <i>L. pneumophila</i>, including dUTPase. Here, we present analysis of two crystal structures of <i>L. pneumophila</i> dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 4","pages":"155-162"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of dUTPase from Legionella pneumophila\",\"authors\":\"Chi L. Nguyen,&nbsp;Abigail R. Tramell,&nbsp;Jordan O. Norman,&nbsp;Jan Abendroth,&nbsp;Kayleigh F. Barrett,&nbsp;Justin K. Craig,&nbsp;Thomas E. Edwards,&nbsp;Donald D. Lorimer,&nbsp;Wesley C. Van Voorhis,&nbsp;Krystle J. McLaughlin\",\"doi\":\"10.1107/S2053230X25001815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular deoxyuridine 5′-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PP<sub>i</sub>). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by <i>Legionella pneumophila</i> serogroup 1. Increased characterization of the <i>L. pneumophila</i> proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in <i>L. pneumophila</i>, including dUTPase. Here, we present analysis of two crystal structures of <i>L. pneumophila</i> dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.</p>\",\"PeriodicalId\":7029,\"journal\":{\"name\":\"Acta crystallographica. Section F, Structural biology communications\",\"volume\":\"81 4\",\"pages\":\"155-162\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section F, Structural biology communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25001815\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25001815","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞脱氧尿苷5′-三磷酸核苷酸水解酶(dutpase)可催化三磷酸脱氧尿苷(dUTP)水解为单磷酸脱氧尿苷(dUMP)和焦磷酸脱氧尿苷(PPi)。dUTP酶是维持体内平衡dTTP:dUTP比例的重要代谢酶。由于DNA聚合酶在复制过程中无法区分胸腺嘧啶和尿嘧啶,因此dTTP:dUTP比例对于防止尿嘧啶错误结合到DNA中至关重要。在dUTP酶对dTTP:dUTP比例的调控缺失的情况下,DNA修复酶诱导许多DNA双链断裂,最终可能导致细胞死亡。军团病是一种罕见但严重的呼吸道感染,主要由嗜肺军团菌血清组1引起。增加嗜肺乳杆菌蛋白质组的特性对开发新的治疗方法很有意义。许多DNA代谢蛋白尚未在嗜肺乳杆菌中被表征,包括dUTPase。在这里,我们分析了嗜肺L. dUTPase在载脂蛋白和dump结合状态下的两种晶体结构,分别确定为1.80和1.95 Å分辨率。这些结构是由西雅图传染病结构基因组学中心(SSGCID)解决的,这是他们确定在人类病原体中具有重要生物学作用的蛋白质和其他分子结构的任务的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural characterization of dUTPase from Legionella pneumophila

Structural characterization of dUTPase from Legionella pneumophila

Cellular deoxyuridine 5′-triphosphate nucleotidohydrolases (dUTPases) catalyze the hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and pyrophosphate (PPi). dUTPase is an essential metabolic enzyme which maintains the homeostatic dTTP:dUTP ratio. As DNA polymerases are unable to distinguish between thymine and uracil during replication, the dTTP:dUTP ratio is essential for preventing the misincorporation of uracil into DNA. In the absence of dUTPase regulation of the dTTP:dUTP ratio, many DNA double-strand breaks are induced by DNA-repair enzymes, which may ultimately lead to cell death. Legionnaires' disease is a rare but severe respiratory infection caused primarily by Legionella pneumophila serogroup 1. Increased characterization of the L. pneumophila proteome is of interest for the development of new treatments. Many DNA metabolism proteins have yet to be characterized in L. pneumophila, including dUTPase. Here, we present analysis of two crystal structures of L. pneumophila dUTPase in its apo and dUMP-bound states, determined to 1.80 and 1.95 Å resolution, respectively. The structures were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID) as part of their mission to determine structures of proteins and other molecules with an important biological role in human pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta crystallographica. Section F, Structural biology communications
Acta crystallographica. Section F, Structural biology communications BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.90
自引率
0.00%
发文量
95
期刊介绍: Acta Crystallographica Section F is a rapid structural biology communications journal. Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal. The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles. Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信