甘油磷脂:在细胞运输和相关先天错误中的作用

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Foudil Lamari, Francis Rossignol, Grant A. Mitchell
{"title":"甘油磷脂:在细胞运输和相关先天错误中的作用","authors":"Foudil Lamari,&nbsp;Francis Rossignol,&nbsp;Grant A. Mitchell","doi":"10.1002/jimd.70019","DOIUrl":null,"url":null,"abstract":"<p>Glycerophospholipids (GPLs) are the main lipid components of cellular membranes. They are implicated in membrane structure, vesicle trafficking, neurotransmission, and cell signalling. GPL molecules are amphiphilic, organized around the three carbons of glycerol. Positions <i>sn-1</i> and <i>sn-2</i> are each esterified to a fatty acid (FA). At position <i>sn-3</i>, a phosphate group is linked, which in turn can bind a polar head group, the most prevalent classes being phosphatidic acid (PA, phosphate alone as head group), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). Pathways of GPL biosynthesis span several cell compartments (endoplasmic reticulum (ER), Golgi mitochondria). Particularly important are mitochondria-associated membranes (MAMs), where the ER and mitochondrial outer membrane are in proximity. After synthesis, GPLs continuously undergo remodelling by FA hydrolysis and re-esterification. Esterification with different FAs alters membrane properties. Many steps in GPL synthesis and remodelling can be mediated by more than one enzyme, suggesting complexity that requires further exploration. The 38 known GPL-related inborn errors are clinically diverse. 23 (61%) have neurologic features, sometimes progressive and severe, particularly developmental delay/encephalopathy in 16 (42%) and spastic paraplegia in 12 (32%). Photoreceptor/neuroretinal disease occurs in 14 (37%). Three present skeletal dysplasias (8%). Most GPL inborn errors have been diagnosed by broad molecular testing. Lipidomics holds promise for diagnostic testing and for the discovery of functionally relevant metabolite profiles for monitoring natural history and treatment response.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70019","citationCount":"0","resultStr":"{\"title\":\"Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors\",\"authors\":\"Foudil Lamari,&nbsp;Francis Rossignol,&nbsp;Grant A. Mitchell\",\"doi\":\"10.1002/jimd.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glycerophospholipids (GPLs) are the main lipid components of cellular membranes. They are implicated in membrane structure, vesicle trafficking, neurotransmission, and cell signalling. GPL molecules are amphiphilic, organized around the three carbons of glycerol. Positions <i>sn-1</i> and <i>sn-2</i> are each esterified to a fatty acid (FA). At position <i>sn-3</i>, a phosphate group is linked, which in turn can bind a polar head group, the most prevalent classes being phosphatidic acid (PA, phosphate alone as head group), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). Pathways of GPL biosynthesis span several cell compartments (endoplasmic reticulum (ER), Golgi mitochondria). Particularly important are mitochondria-associated membranes (MAMs), where the ER and mitochondrial outer membrane are in proximity. After synthesis, GPLs continuously undergo remodelling by FA hydrolysis and re-esterification. Esterification with different FAs alters membrane properties. Many steps in GPL synthesis and remodelling can be mediated by more than one enzyme, suggesting complexity that requires further exploration. The 38 known GPL-related inborn errors are clinically diverse. 23 (61%) have neurologic features, sometimes progressive and severe, particularly developmental delay/encephalopathy in 16 (42%) and spastic paraplegia in 12 (32%). Photoreceptor/neuroretinal disease occurs in 14 (37%). Three present skeletal dysplasias (8%). Most GPL inborn errors have been diagnosed by broad molecular testing. Lipidomics holds promise for diagnostic testing and for the discovery of functionally relevant metabolite profiles for monitoring natural history and treatment response.</p>\",\"PeriodicalId\":16281,\"journal\":{\"name\":\"Journal of Inherited Metabolic Disease\",\"volume\":\"48 2\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inherited Metabolic Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70019\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

甘油磷脂(GPLs)是细胞膜的主要脂质成分。它们与膜结构、囊泡运输、神经传递和细胞信号传导有关。GPL分子是两亲性的,围绕甘油的三个碳组成。位置sn-1和sn-2分别酯化成脂肪酸(FA)。在sn-3位置,一个磷酸基团相连,它又可以结合一个极性头基,最常见的类别是磷脂酸(PA,磷酸单独作为头基)、磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)和心磷脂(CL)。GPL生物合成途径跨越多个细胞区室(内质网(ER),高尔基体线粒体)。特别重要的是线粒体相关膜(MAMs),其中内质网和线粒体外膜非常接近。合成后,gpl不断通过FA水解和再酯化进行重构。不同FAs的酯化反应改变了膜的性质。GPL合成和重塑的许多步骤可以由不止一种酶介导,这表明复杂性需要进一步探索。38种已知的gpl相关先天性错误在临床上是多种多样的。23例(61%)具有神经系统特征,有时是进行性和严重的,特别是发育迟缓/脑病16例(42%)和痉挛性截瘫12例(32%)。14例(37%)发生光感受器/神经视网膜疾病。3例出现骨骼发育不良(8%)。大多数GPL先天错误都是通过广泛的分子检测来诊断的。脂质组学有望用于诊断测试和发现功能相关的代谢物谱,以监测自然病史和治疗反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors

Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors

Glycerophospholipids (GPLs) are the main lipid components of cellular membranes. They are implicated in membrane structure, vesicle trafficking, neurotransmission, and cell signalling. GPL molecules are amphiphilic, organized around the three carbons of glycerol. Positions sn-1 and sn-2 are each esterified to a fatty acid (FA). At position sn-3, a phosphate group is linked, which in turn can bind a polar head group, the most prevalent classes being phosphatidic acid (PA, phosphate alone as head group), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). Pathways of GPL biosynthesis span several cell compartments (endoplasmic reticulum (ER), Golgi mitochondria). Particularly important are mitochondria-associated membranes (MAMs), where the ER and mitochondrial outer membrane are in proximity. After synthesis, GPLs continuously undergo remodelling by FA hydrolysis and re-esterification. Esterification with different FAs alters membrane properties. Many steps in GPL synthesis and remodelling can be mediated by more than one enzyme, suggesting complexity that requires further exploration. The 38 known GPL-related inborn errors are clinically diverse. 23 (61%) have neurologic features, sometimes progressive and severe, particularly developmental delay/encephalopathy in 16 (42%) and spastic paraplegia in 12 (32%). Photoreceptor/neuroretinal disease occurs in 14 (37%). Three present skeletal dysplasias (8%). Most GPL inborn errors have been diagnosed by broad molecular testing. Lipidomics holds promise for diagnostic testing and for the discovery of functionally relevant metabolite profiles for monitoring natural history and treatment response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inherited Metabolic Disease
Journal of Inherited Metabolic Disease 医学-内分泌学与代谢
CiteScore
9.50
自引率
7.10%
发文量
117
审稿时长
4-8 weeks
期刊介绍: The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信