行星球磨机粉碎工业矿物废料的参数优化

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. G. Gerasimova, Yu. V. Kuzmich, E. S. Shchukina, N. A. Yakovleva
{"title":"行星球磨机粉碎工业矿物废料的参数优化","authors":"L. G. Gerasimova,&nbsp;Yu. V. Kuzmich,&nbsp;E. S. Shchukina,&nbsp;N. A. Yakovleva","doi":"10.1134/S0020168525700025","DOIUrl":null,"url":null,"abstract":"<p>This paper reports our results on utilization of industrial waste having a multicomponent mineralogical composition and resulting from apatite–nepheline ore beneficiation. Using a high-energy planetary ball mill, the mineral mixture was ground into fine powder. We have studied the process of dispersing the mineral components of the mixture in relation to the main process parameters: vial rotation speed, ball-to-powder weight ratio, and milling time. The results demonstrate that, under “severe” grinding conditions, disintegration of brittle particles of the minerals sphene and aegirine slows down owing to the plasticity of the particles of the minerals apatite and nepheline, which reduces the efficiency of the high-energy grinding process, aimed at reducing the particle size and increasing the specific surface area of the material. The grinding process has been shown to cause not only a reduction in the size of mineral particles, but also changes in their optical properties through amorphization of their surface. This allows mechanically activated powder to be used as a precursor for the preparation of weather-resistant color filler pigments for building and paint materials instead of expensive synthetic analogs.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 11","pages":"1380 - 1390"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Parameters of Industrial Mineral Waste Grinding in a Planetary Ball Mill\",\"authors\":\"L. G. Gerasimova,&nbsp;Yu. V. Kuzmich,&nbsp;E. S. Shchukina,&nbsp;N. A. Yakovleva\",\"doi\":\"10.1134/S0020168525700025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper reports our results on utilization of industrial waste having a multicomponent mineralogical composition and resulting from apatite–nepheline ore beneficiation. Using a high-energy planetary ball mill, the mineral mixture was ground into fine powder. We have studied the process of dispersing the mineral components of the mixture in relation to the main process parameters: vial rotation speed, ball-to-powder weight ratio, and milling time. The results demonstrate that, under “severe” grinding conditions, disintegration of brittle particles of the minerals sphene and aegirine slows down owing to the plasticity of the particles of the minerals apatite and nepheline, which reduces the efficiency of the high-energy grinding process, aimed at reducing the particle size and increasing the specific surface area of the material. The grinding process has been shown to cause not only a reduction in the size of mineral particles, but also changes in their optical properties through amorphization of their surface. This allows mechanically activated powder to be used as a precursor for the preparation of weather-resistant color filler pigments for building and paint materials instead of expensive synthetic analogs.</p>\",\"PeriodicalId\":585,\"journal\":{\"name\":\"Inorganic Materials\",\"volume\":\"60 11\",\"pages\":\"1380 - 1390\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0020168525700025\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168525700025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了磷灰石-霞石选矿产生的多组分矿物学成分工业废渣的资源化利用研究结果。使用高能行星球磨机,矿物混合物被磨成细粉。我们研究了分散混合物矿物成分的过程与主要工艺参数的关系:小瓶转速、球粉重量比和磨矿时间。结果表明:在“强”磨矿条件下,磷灰石和霞石颗粒具有塑性,导致榍石和石墨烯脆性颗粒的崩解速度减慢,从而降低了以减小颗粒尺寸和增加材料比表面积为目的的高能磨矿过程的效率;研磨过程不仅使矿物颗粒的尺寸减小,而且通过其表面的非晶化也改变了它们的光学性质。这使得机械活化粉末可以用作制备建筑和油漆材料的耐候性颜色填充颜料的前驱体,而不是昂贵的合成类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of Parameters of Industrial Mineral Waste Grinding in a Planetary Ball Mill

Optimization of Parameters of Industrial Mineral Waste Grinding in a Planetary Ball Mill

This paper reports our results on utilization of industrial waste having a multicomponent mineralogical composition and resulting from apatite–nepheline ore beneficiation. Using a high-energy planetary ball mill, the mineral mixture was ground into fine powder. We have studied the process of dispersing the mineral components of the mixture in relation to the main process parameters: vial rotation speed, ball-to-powder weight ratio, and milling time. The results demonstrate that, under “severe” grinding conditions, disintegration of brittle particles of the minerals sphene and aegirine slows down owing to the plasticity of the particles of the minerals apatite and nepheline, which reduces the efficiency of the high-energy grinding process, aimed at reducing the particle size and increasing the specific surface area of the material. The grinding process has been shown to cause not only a reduction in the size of mineral particles, but also changes in their optical properties through amorphization of their surface. This allows mechanically activated powder to be used as a precursor for the preparation of weather-resistant color filler pigments for building and paint materials instead of expensive synthetic analogs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Materials
Inorganic Materials 工程技术-材料科学:综合
CiteScore
1.40
自引率
25.00%
发文量
80
审稿时长
3-6 weeks
期刊介绍: Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信