G. M. Kaleva, E. D. Politova, S. A. Ivanov, A. V. Mosunov, S. Yu. Stefanovich, N. V. Sadovskaya
{"title":"固溶体(K0.5Na0.5) NbO3-SrZrO3改性陶瓷的合成、微观结构及介电性能","authors":"G. M. Kaleva, E. D. Politova, S. A. Ivanov, A. V. Mosunov, S. Yu. Stefanovich, N. V. Sadovskaya","doi":"10.1134/S0020168524701553","DOIUrl":null,"url":null,"abstract":"<p>—Single-phase ceramic samples of new compositions (1 – <i>x</i>)(K<sub>0.5</sub>Na<sub>0.5</sub>)NbO<sub>3</sub>–<i>x</i>SrZrO<sub>3</sub> (<i>x</i> = 0–0.15) modified with the addition of 2 wt % ZnO were obtained via the solid-state synthesis method. Their crystal structures, microstructures, dielectric, and nonlinear optical properties were studied. The modified samples were found to form a phase with a perovskite structure and a pseudocubic unit cell. A decrease in the average crystallite size (coherent scattering regions) from 91 to 54 nm was observed. Ferroelectric phase transitions were confirmed using dielectric spectroscopy. A reduction in the phase transition temperatures and a weakening of nonlinear optical properties were revealed with an increase in the strontium zirconate content in the samples.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 10","pages":"1257 - 1263"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Microstructure, and Dielectric Properties of Modified Ceramics Based on Solid Solutions (K0.5Na0.5)NbO3–SrZrO3\",\"authors\":\"G. M. Kaleva, E. D. Politova, S. A. Ivanov, A. V. Mosunov, S. Yu. Stefanovich, N. V. Sadovskaya\",\"doi\":\"10.1134/S0020168524701553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>—Single-phase ceramic samples of new compositions (1 – <i>x</i>)(K<sub>0.5</sub>Na<sub>0.5</sub>)NbO<sub>3</sub>–<i>x</i>SrZrO<sub>3</sub> (<i>x</i> = 0–0.15) modified with the addition of 2 wt % ZnO were obtained via the solid-state synthesis method. Their crystal structures, microstructures, dielectric, and nonlinear optical properties were studied. The modified samples were found to form a phase with a perovskite structure and a pseudocubic unit cell. A decrease in the average crystallite size (coherent scattering regions) from 91 to 54 nm was observed. Ferroelectric phase transitions were confirmed using dielectric spectroscopy. A reduction in the phase transition temperatures and a weakening of nonlinear optical properties were revealed with an increase in the strontium zirconate content in the samples.</p>\",\"PeriodicalId\":585,\"journal\":{\"name\":\"Inorganic Materials\",\"volume\":\"60 10\",\"pages\":\"1257 - 1263\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0020168524701553\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701553","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, Microstructure, and Dielectric Properties of Modified Ceramics Based on Solid Solutions (K0.5Na0.5)NbO3–SrZrO3
—Single-phase ceramic samples of new compositions (1 – x)(K0.5Na0.5)NbO3–xSrZrO3 (x = 0–0.15) modified with the addition of 2 wt % ZnO were obtained via the solid-state synthesis method. Their crystal structures, microstructures, dielectric, and nonlinear optical properties were studied. The modified samples were found to form a phase with a perovskite structure and a pseudocubic unit cell. A decrease in the average crystallite size (coherent scattering regions) from 91 to 54 nm was observed. Ferroelectric phase transitions were confirmed using dielectric spectroscopy. A reduction in the phase transition temperatures and a weakening of nonlinear optical properties were revealed with an increase in the strontium zirconate content in the samples.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.