K. B. Podbolotov, Yu. A. Egorova, L. V. Dogotar’, S. V. Vasilevich, A. N. Asadchii
{"title":"Thermochemical Synthesis of Molybdenum Carbide on the Basis of the (NH4)6Mo7O24–NH4NO3–C6H12N4 System","authors":"K. B. Podbolotov, Yu. A. Egorova, L. V. Dogotar’, S. V. Vasilevich, A. N. Asadchii","doi":"10.1134/S0020168524701528","DOIUrl":null,"url":null,"abstract":"<p>Data on the thermochemical synthesis of molybdenum carbide on the basis of the (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>–NH<sub>4</sub>NO<sub>3</sub>–C<sub>6</sub>H<sub>12</sub>N<sub>4</sub> system at different component ratios have been reported. Thermodynamic computations have been performed to establish composition regions for probable exothermic reactions to produce molybdenum carbide: 10–20 moles of ammonium nitrate per 1 mole of ammonium molybdate and the ratio of reducing agent to oxidizing agent (φ) equal to 1.5–4.0. It has been found that the reaction in ammonium molybdate–ammonium nitrate–urotropin system includes several stages, the main exothermic reaction is observed after temperature of 120–180°C is reached. Molybdenum carbide forms at φ ≥ 6.5 after thermal treatment at 1000°C under inert atmosphere. The reaction leads to fine crystalline structure of particles with size of 100–200 nm. The obtained materials based on molybdenum carbide show catalytic activity in the conversion of products of incomplete combustion of biofuel (pyrolysis resins). Addition of the obtained materials to pyrolysis resin in 1/10 ratio enhances its conversion (rate parameter increases by 2–10 times), reduces average process temperature by 50–100°C, and decreases activation energy from 82 to 52–65 kJ/mol.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"60 10","pages":"1205 - 1215"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168524701528","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermochemical Synthesis of Molybdenum Carbide on the Basis of the (NH4)6Mo7O24–NH4NO3–C6H12N4 System
Data on the thermochemical synthesis of molybdenum carbide on the basis of the (NH4)6Mo7O24–NH4NO3–C6H12N4 system at different component ratios have been reported. Thermodynamic computations have been performed to establish composition regions for probable exothermic reactions to produce molybdenum carbide: 10–20 moles of ammonium nitrate per 1 mole of ammonium molybdate and the ratio of reducing agent to oxidizing agent (φ) equal to 1.5–4.0. It has been found that the reaction in ammonium molybdate–ammonium nitrate–urotropin system includes several stages, the main exothermic reaction is observed after temperature of 120–180°C is reached. Molybdenum carbide forms at φ ≥ 6.5 after thermal treatment at 1000°C under inert atmosphere. The reaction leads to fine crystalline structure of particles with size of 100–200 nm. The obtained materials based on molybdenum carbide show catalytic activity in the conversion of products of incomplete combustion of biofuel (pyrolysis resins). Addition of the obtained materials to pyrolysis resin in 1/10 ratio enhances its conversion (rate parameter increases by 2–10 times), reduces average process temperature by 50–100°C, and decreases activation energy from 82 to 52–65 kJ/mol.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.