Weiwei Liu;Wenxuan Hu;Wei Jing;Lanxin Lei;Lingping Gao;Yong Liu
{"title":"Learning to Model Diverse Driving Behaviors in Highly Interactive Autonomous Driving Scenarios With Multiagent Reinforcement Learning","authors":"Weiwei Liu;Wenxuan Hu;Wei Jing;Lanxin Lei;Lingping Gao;Yong Liu","doi":"10.1109/JSYST.2025.3528976","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles trained through multiagent reinforcement learning (MARL) have shown impressive results in many driving scenarios. However, the performance of these trained policies can be impacted when faced with diverse driving styles and personalities, particularly in highly interactive situations. This is because conventional MARL algorithms usually operate under the assumption of fully cooperative behavior among all agents and focus on maximizing team rewards during training. To address this issue, we introduce the personality modeling network (PeMN), which includes a cooperation value function and personality parameters to model the varied interactions in high-interactive scenarios. The PeMN also enables the training of a background traffic flow with diverse behaviors, thereby improving the performance and generalization of the ego vehicle. Our extensive experimental studies, which incorporate different personality parameters in high-interactive driving scenarios, demonstrate that the personality parameters effectively model diverse driving styles and that policies trained with PeMN demonstrate better generalization than traditional MARL methods.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 1","pages":"317-326"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10869517/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Learning to Model Diverse Driving Behaviors in Highly Interactive Autonomous Driving Scenarios With Multiagent Reinforcement Learning
Autonomous vehicles trained through multiagent reinforcement learning (MARL) have shown impressive results in many driving scenarios. However, the performance of these trained policies can be impacted when faced with diverse driving styles and personalities, particularly in highly interactive situations. This is because conventional MARL algorithms usually operate under the assumption of fully cooperative behavior among all agents and focus on maximizing team rewards during training. To address this issue, we introduce the personality modeling network (PeMN), which includes a cooperation value function and personality parameters to model the varied interactions in high-interactive scenarios. The PeMN also enables the training of a background traffic flow with diverse behaviors, thereby improving the performance and generalization of the ego vehicle. Our extensive experimental studies, which incorporate different personality parameters in high-interactive driving scenarios, demonstrate that the personality parameters effectively model diverse driving styles and that policies trained with PeMN demonstrate better generalization than traditional MARL methods.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.