来自M87*和Sgr A* EHT观测的旋转量子修正黑洞的阴影和参数估计及约束

IF 10.2 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Heena Ali , Shafqat Ul Islam , Sushant G. Ghosh
{"title":"来自M87*和Sgr A* EHT观测的旋转量子修正黑洞的阴影和参数估计及约束","authors":"Heena Ali ,&nbsp;Shafqat Ul Islam ,&nbsp;Sushant G. Ghosh","doi":"10.1016/j.jheap.2025.100367","DOIUrl":null,"url":null,"abstract":"<div><div>The scarcity of quantum gravity (QG) inspired rotating black holes limits the progress of testing QG through Event Horizon Telescope (EHT) observations. The EHT imaged the supermassive black holes, Sgr A* and M87*, revealing an angular shadow diameter of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mo>=</mo><mn>48.7</mn><mo>±</mo><mn>7</mn><mi>μ</mi></math></span>as with a black hole mass of <span><math><mi>M</mi><mo>=</mo><msubsup><mrow><mn>4.0</mn></mrow><mrow><mo>−</mo><mn>0.6</mn></mrow><mrow><mo>+</mo><mn>1.1</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mi>M</mi><mo>⊙</mo></math></span> for Sgr A*. For M87*, with a mass of <span><math><mi>M</mi><mo>=</mo><mo>(</mo><mn>6.5</mn><mo>±</mo><mn>0.7</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, the EHT measured an angular diameter of <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>42</mn><mo>±</mo><mn>3</mn><mi>μ</mi></math></span>as. We present rotating quantum-corrected black hole (RQCBH) spacetimes with an additional QC parameter <em>α</em> and constrain it by EHT observations. For angular shadow diameter (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub></math></span>) of Sgr A* at <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>50</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mn>0.0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1.443</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8066</mn><mi>M</mi><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>90</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mn>0.0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1.447</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.894</mn><mi>M</mi><mo>)</mo></math></span>. While for M87* at inclination <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>17</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8511</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.6157</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0.8985</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. For <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>90</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8262</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.9799</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0.4141</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. These results show that <em>α</em> significantly affects the shadows, offering key constraints on QG models. With EHT constraints from Sgr A and M87*, RQCBHs and Kerr black holes are indistinguishable in much of the EHT-constrained parameter space, making RQCBHs strong candidates for astrophysical black holes along with other BHs, e.g., regular black holes and other quantum-corrected solutions.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"47 ","pages":"Article 100367"},"PeriodicalIF":10.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shadows and parameter estimation of rotating quantum corrected black holes and constraints from EHT observation of M87* and Sgr A*\",\"authors\":\"Heena Ali ,&nbsp;Shafqat Ul Islam ,&nbsp;Sushant G. Ghosh\",\"doi\":\"10.1016/j.jheap.2025.100367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The scarcity of quantum gravity (QG) inspired rotating black holes limits the progress of testing QG through Event Horizon Telescope (EHT) observations. The EHT imaged the supermassive black holes, Sgr A* and M87*, revealing an angular shadow diameter of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mo>=</mo><mn>48.7</mn><mo>±</mo><mn>7</mn><mi>μ</mi></math></span>as with a black hole mass of <span><math><mi>M</mi><mo>=</mo><msubsup><mrow><mn>4.0</mn></mrow><mrow><mo>−</mo><mn>0.6</mn></mrow><mrow><mo>+</mo><mn>1.1</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mi>M</mi><mo>⊙</mo></math></span> for Sgr A*. For M87*, with a mass of <span><math><mi>M</mi><mo>=</mo><mo>(</mo><mn>6.5</mn><mo>±</mo><mn>0.7</mn><mo>)</mo><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, the EHT measured an angular diameter of <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>42</mn><mo>±</mo><mn>3</mn><mi>μ</mi></math></span>as. We present rotating quantum-corrected black hole (RQCBH) spacetimes with an additional QC parameter <em>α</em> and constrain it by EHT observations. For angular shadow diameter (<span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub></math></span>) of Sgr A* at <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>50</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mn>0.0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1.443</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8066</mn><mi>M</mi><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>90</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mn>0.0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1.447</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.894</mn><mi>M</mi><mo>)</mo></math></span>. While for M87* at inclination <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>17</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8511</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.6157</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0.8985</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. For <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>90</mn></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the bounds are <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.8262</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.9799</mn><mi>M</mi><mo>)</mo></math></span> at <span><math><mi>α</mi><mo>=</mo><mn>0.4141</mn><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. These results show that <em>α</em> significantly affects the shadows, offering key constraints on QG models. With EHT constraints from Sgr A and M87*, RQCBHs and Kerr black holes are indistinguishable in much of the EHT-constrained parameter space, making RQCBHs strong candidates for astrophysical black holes along with other BHs, e.g., regular black holes and other quantum-corrected solutions.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"47 \",\"pages\":\"Article 100367\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825000485\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825000485","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

量子引力(QG)激发的旋转黑洞的稀缺性限制了通过事件视界望远镜(EHT)观测测试量子引力(QG)的进展。超大质量黑洞Sgr A*和M87*的EHT成像显示,Sgr A*的角阴影直径为dsh=48.7±7μas,黑洞质量M=4.0−0.6+1.1×106M⊙。对于质量为M=(6.5±0.7)×109M⊙的M87*,测得的EHT角直径为θd=42±3μas。我们提出了带有附加QC参数α的旋转量子修正黑洞(RQCBH)时空,并通过EHT观测对其进行了约束。对于Sgr A*在θo=500处的角阴影直径(dsh),界限为0.0≤α≤1.443M2, A∈(0,0.8066 m)。当θo=900时,边界为0.0≤α≤1.447M2,且a∈(0,0.894 m)。而对于倾角θo=170处的M87*,在α=0处的界为a∈(0,0.8511 m),在α=0.8985M2处的界为a∈(0,0.6157m)。对于θo=900,在α=0处a∈(0,0.8262 2m),在α=0.4141M2处a∈(0,0.9799 9m)。这些结果表明,α显著影响阴影,为QG模型提供了关键约束。在Sgr A和M87*的EHT约束下,RQCBHs和Kerr黑洞在EHT约束的参数空间中是无法区分的,这使得RQCBHs与其他黑洞(如规则黑洞和其他量子校正解)一起成为天体物理黑洞的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadows and parameter estimation of rotating quantum corrected black holes and constraints from EHT observation of M87* and Sgr A*
The scarcity of quantum gravity (QG) inspired rotating black holes limits the progress of testing QG through Event Horizon Telescope (EHT) observations. The EHT imaged the supermassive black holes, Sgr A* and M87*, revealing an angular shadow diameter of dsh=48.7±7μas with a black hole mass of M=4.00.6+1.1×106M for Sgr A*. For M87*, with a mass of M=(6.5±0.7)×109M, the EHT measured an angular diameter of θd=42±3μas. We present rotating quantum-corrected black hole (RQCBH) spacetimes with an additional QC parameter α and constrain it by EHT observations. For angular shadow diameter (dsh) of Sgr A* at θo=500, the bounds are 0.0α1.443M2 and a(0,0.8066M). For θo=900, the bounds are 0.0α1.447M2 and a(0,0.894M). While for M87* at inclination θo=170, the bounds are a(0,0.8511M) at α=0 and a(0,0.6157M) at α=0.8985M2. For θo=900, the bounds are a(0,0.8262M) at α=0 and a(0,0.9799M) at α=0.4141M2. These results show that α significantly affects the shadows, offering key constraints on QG models. With EHT constraints from Sgr A and M87*, RQCBHs and Kerr black holes are indistinguishable in much of the EHT-constrained parameter space, making RQCBHs strong candidates for astrophysical black holes along with other BHs, e.g., regular black holes and other quantum-corrected solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信