交叉迁移的若干类生成隐含解的特征

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Tianlong Zhang , Kuanyun Zhu , Jingru Wang , Deng Pan
{"title":"交叉迁移的若干类生成隐含解的特征","authors":"Tianlong Zhang ,&nbsp;Kuanyun Zhu ,&nbsp;Jingru Wang ,&nbsp;Deng Pan","doi":"10.1016/j.fss.2025.109375","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the cross-migrativity between grouping functions and the (<em>g</em>, min)-implications generated by additive generators of continuous Archimedean t-conorms and the <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>-implications introduced by generalized additive generators of representable uninorms. In addition, we show that (<span><math><mi>g</mi><mo>,</mo><mi>min</mi></math></span>)-implications and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>-implications do not belong to any of the classes known <span><math><mo>(</mo><mi>S</mi><mo>,</mo><mi>N</mi><mo>)</mo><mo>−</mo><mo>,</mo><mi>R</mi><mo>−</mo><mo>,</mo><mi>Q</mi><mi>L</mi><mo>−</mo></math></span>, generalized-<em>h</em>, <em>h</em>-generated, Yager's <em>f</em>- and <em>g</em>-implications. In particular, we establish a series of necessary and sufficient conditions for the cross-migrativity of the grouping functions and several particular types of generated implications (i.e., <em>h</em>-generated implications, <em>k</em>-generated implications, (<span><math><mi>g</mi><mo>,</mo><mi>min</mi></math></span>)-implications and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>-implications) by using the multiplicative (additive) generators and ordinal sums of grouping functions, the distributive laws and contraction law between grouping functions and fuzzy implications, and study a broader connection between grouping functions and generated implications.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"511 ","pages":"Article 109375"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of some classes of generated implication solutions to the cross-migrativity\",\"authors\":\"Tianlong Zhang ,&nbsp;Kuanyun Zhu ,&nbsp;Jingru Wang ,&nbsp;Deng Pan\",\"doi\":\"10.1016/j.fss.2025.109375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the cross-migrativity between grouping functions and the (<em>g</em>, min)-implications generated by additive generators of continuous Archimedean t-conorms and the <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>-implications introduced by generalized additive generators of representable uninorms. In addition, we show that (<span><math><mi>g</mi><mo>,</mo><mi>min</mi></math></span>)-implications and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>-implications do not belong to any of the classes known <span><math><mo>(</mo><mi>S</mi><mo>,</mo><mi>N</mi><mo>)</mo><mo>−</mo><mo>,</mo><mi>R</mi><mo>−</mo><mo>,</mo><mi>Q</mi><mi>L</mi><mo>−</mo></math></span>, generalized-<em>h</em>, <em>h</em>-generated, Yager's <em>f</em>- and <em>g</em>-implications. In particular, we establish a series of necessary and sufficient conditions for the cross-migrativity of the grouping functions and several particular types of generated implications (i.e., <em>h</em>-generated implications, <em>k</em>-generated implications, (<span><math><mi>g</mi><mo>,</mo><mi>min</mi></math></span>)-implications and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>-implications) by using the multiplicative (additive) generators and ordinal sums of grouping functions, the distributive laws and contraction law between grouping functions and fuzzy implications, and study a broader connection between grouping functions and generated implications.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"511 \",\"pages\":\"Article 109375\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425001149\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425001149","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要讨论了群函数之间的交叉迁移性,以及由连续阿基米德t-正则的可加性生成的(g, min)-蕴涵和由可表示一致的广义可加性生成的h - 1蕴涵。此外,我们证明(g,min)-蕴涵和h- 1-蕴涵不属于已知的(S,N) -,R -,QL -,广义-h, h-生成,Yager的f-和g-蕴涵中的任何一类。特别地,我们利用群函数的乘法(加性)生成子和序和,群函数和模糊隐含子之间的分配律和收缩律,建立了群函数和若干特定类型的生成隐含子(即h-生成隐含子、k-生成隐含子、(g,min)-隐含子和h−1-隐含子)的交叉迁移性的一系列充要条件。并研究分组功能和生成的含义之间更广泛的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of some classes of generated implication solutions to the cross-migrativity
This paper focuses on the cross-migrativity between grouping functions and the (g, min)-implications generated by additive generators of continuous Archimedean t-conorms and the h1-implications introduced by generalized additive generators of representable uninorms. In addition, we show that (g,min)-implications and h1-implications do not belong to any of the classes known (S,N),R,QL, generalized-h, h-generated, Yager's f- and g-implications. In particular, we establish a series of necessary and sufficient conditions for the cross-migrativity of the grouping functions and several particular types of generated implications (i.e., h-generated implications, k-generated implications, (g,min)-implications and h1-implications) by using the multiplicative (additive) generators and ordinal sums of grouping functions, the distributive laws and contraction law between grouping functions and fuzzy implications, and study a broader connection between grouping functions and generated implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信