乘性Ising模型的热力学形式和大偏差原理

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jung-Chao Ban , Wen-Guei Hu , Guan-Yu Lai
{"title":"乘性Ising模型的热力学形式和大偏差原理","authors":"Jung-Chao Ban ,&nbsp;Wen-Guei Hu ,&nbsp;Guan-Yu Lai","doi":"10.1016/j.chaos.2025.116285","DOIUrl":null,"url":null,"abstract":"<div><div>In the paper, we explore the thermodynamics of Ising models in relation to 2-multiple Hamiltonians. We extend the findings of Chazottes and Redig (2014) to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We establish the large deviation principle (LDP) for the average <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msubsup></mrow></math></span>, where <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msubsup></math></span> is a 2-multiple sum along a semigroup generated by <span><math><mi>k</mi></math></span> co-primes. This extends the previous results by Ban et al. (2022) to a broader class of long-range interactions. Finally, the results are generalized to the multidimensional lattice <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We also provide the formulae for various thermodynamic properties corresponding to the given model.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116285"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic formalism and large deviation principle of multiplicative Ising models\",\"authors\":\"Jung-Chao Ban ,&nbsp;Wen-Guei Hu ,&nbsp;Guan-Yu Lai\",\"doi\":\"10.1016/j.chaos.2025.116285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the paper, we explore the thermodynamics of Ising models in relation to 2-multiple Hamiltonians. We extend the findings of Chazottes and Redig (2014) to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We establish the large deviation principle (LDP) for the average <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msubsup></mrow></math></span>, where <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msubsup></math></span> is a 2-multiple sum along a semigroup generated by <span><math><mi>k</mi></math></span> co-primes. This extends the previous results by Ban et al. (2022) to a broader class of long-range interactions. Finally, the results are generalized to the multidimensional lattice <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We also provide the formulae for various thermodynamic properties corresponding to the given model.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"195 \",\"pages\":\"Article 116285\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096007792500298X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500298X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了与2倍哈密顿量有关的伊辛模型的热力学。我们将Chazottes和Redig(2014)的研究结果扩展到Nd。我们建立了平均1NSNG的大偏差原理(LDP),其中SNG是由k个协素生成的半群上的2倍和。这将Ban等人(2022)的先前结果扩展到更广泛的远程相互作用类别。最后,将结果推广到d≥1的多维格Nd。我们还提供了与给定模型相对应的各种热力学性质的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic formalism and large deviation principle of multiplicative Ising models
In the paper, we explore the thermodynamics of Ising models in relation to 2-multiple Hamiltonians. We extend the findings of Chazottes and Redig (2014) to Nd. We establish the large deviation principle (LDP) for the average 1NSNG, where SNG is a 2-multiple sum along a semigroup generated by k co-primes. This extends the previous results by Ban et al. (2022) to a broader class of long-range interactions. Finally, the results are generalized to the multidimensional lattice Nd for d1. We also provide the formulae for various thermodynamic properties corresponding to the given model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信