基于模型的带噪声加权网络边缘聚类

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Haomin Li, Daniel K. Sewell
{"title":"基于模型的带噪声加权网络边缘聚类","authors":"Haomin Li,&nbsp;Daniel K. Sewell","doi":"10.1016/j.csda.2025.108172","DOIUrl":null,"url":null,"abstract":"<div><div>Clustering is a fundamental task in network analysis, essential for uncovering hidden structures within complex systems. Edge clustering, which focuses on relationships between nodes rather than the nodes themselves, has gained increased attention in recent years. However, existing edge clustering algorithms often overlook the significance of edge weights, which can represent the strength or capacity of connections, and fail to account for noisy edges—connections that obscure the true structure of the network. To address these challenges, the Weighted Edge Clustering Adjusting for Noise (WECAN) model is introduced. This novel algorithm integrates edge weights into the clustering process and includes a noise component that filters out spurious edges. WECAN offers a data-driven approach to distinguishing between meaningful and noisy edges, avoiding the arbitrary thresholding commonly used in network analysis. Its effectiveness is demonstrated through simulation studies and applications to real-world datasets, showing significant improvements over traditional clustering methods. Additionally, the R package “WECAN”<span><span><sup>1</sup></span></span> has been developed to facilitate its practical implementation.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108172"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based edge clustering for weighted networks with a noise component\",\"authors\":\"Haomin Li,&nbsp;Daniel K. Sewell\",\"doi\":\"10.1016/j.csda.2025.108172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clustering is a fundamental task in network analysis, essential for uncovering hidden structures within complex systems. Edge clustering, which focuses on relationships between nodes rather than the nodes themselves, has gained increased attention in recent years. However, existing edge clustering algorithms often overlook the significance of edge weights, which can represent the strength or capacity of connections, and fail to account for noisy edges—connections that obscure the true structure of the network. To address these challenges, the Weighted Edge Clustering Adjusting for Noise (WECAN) model is introduced. This novel algorithm integrates edge weights into the clustering process and includes a noise component that filters out spurious edges. WECAN offers a data-driven approach to distinguishing between meaningful and noisy edges, avoiding the arbitrary thresholding commonly used in network analysis. Its effectiveness is demonstrated through simulation studies and applications to real-world datasets, showing significant improvements over traditional clustering methods. Additionally, the R package “WECAN”<span><span><sup>1</sup></span></span> has been developed to facilitate its practical implementation.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"209 \",\"pages\":\"Article 108172\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325000489\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000489","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

聚类是网络分析中的一项基本任务,对于揭示复杂系统中的隐藏结构至关重要。边缘聚类,侧重于节点之间的关系而不是节点本身,近年来受到越来越多的关注。然而,现有的边缘聚类算法往往忽略了代表连接强度或容量的边缘权重的重要性,并且无法考虑模糊网络真实结构的噪声边缘连接。为了解决这些问题,引入了加权边缘聚类调整噪声(WECAN)模型。该算法将边缘权值集成到聚类过程中,并包含一个滤除虚假边缘的噪声分量。WECAN提供了一种数据驱动的方法来区分有意义的边缘和有噪声的边缘,避免了网络分析中常用的任意阈值。通过仿真研究和实际数据集的应用证明了它的有效性,显示出比传统聚类方法有显着改进。此外,开发了R包“WECAN”1以促进其实际实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based edge clustering for weighted networks with a noise component
Clustering is a fundamental task in network analysis, essential for uncovering hidden structures within complex systems. Edge clustering, which focuses on relationships between nodes rather than the nodes themselves, has gained increased attention in recent years. However, existing edge clustering algorithms often overlook the significance of edge weights, which can represent the strength or capacity of connections, and fail to account for noisy edges—connections that obscure the true structure of the network. To address these challenges, the Weighted Edge Clustering Adjusting for Noise (WECAN) model is introduced. This novel algorithm integrates edge weights into the clustering process and includes a noise component that filters out spurious edges. WECAN offers a data-driven approach to distinguishing between meaningful and noisy edges, avoiding the arbitrary thresholding commonly used in network analysis. Its effectiveness is demonstrated through simulation studies and applications to real-world datasets, showing significant improvements over traditional clustering methods. Additionally, the R package “WECAN”1 has been developed to facilitate its practical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信