非协整泛函系数回归的极限理论与推论

IF 9.9 3区 经济学 Q1 ECONOMICS
Ying Wang , Peter C.B. Phillips , Yundong Tu
{"title":"非协整泛函系数回归的极限理论与推论","authors":"Ying Wang ,&nbsp;Peter C.B. Phillips ,&nbsp;Yundong Tu","doi":"10.1016/j.jeconom.2025.105996","DOIUrl":null,"url":null,"abstract":"<div><div>Functional coefficient (FC) cointegrating regressions offer empirical investigators flexibility in modeling economic relationships by introducing covariates that influence the direction and intensity of comovement among nonstationary time series. FC regression models are also useful when formal cointegration is absent, in the sense that the equation errors may themselves be nonstationary, but where the nonstationary series display well-defined FC linkages that can be meaningfully interpreted as correlation measures involving the covariates. The present paper proposes new nonparametric estimators for such FC regression models where the nonstationary series display linkages that enable consistent estimation of the correlation measures between them. Specifically, we develop <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent estimators for the functional coefficient and establish their asymptotic distributions, which involve mixed normal limits that facilitate inference. Two novel features that appear in the limit theory are (i) the need for non-diagonal matrix normalization due to the presence of stationary and nonstationary components in the regression; and (ii) random bias elements that appear in the asymptotic distribution of the kernel estimators, again resulting from the nonstationary regression components. Numerical studies reveal that the proposed estimators achieve significant efficiency improvements compared to the estimators suggested in earlier work by Sun et al. (2011). Easily implementable specification tests with standard chi-square asymptotics are suggested to check for constancy of the functional coefficient. These tests are shown to have faster divergence rate under local alternatives and enjoy superior performance in simulations than tests proposed in Gan et al. (2014). An empirical application based on the quantity theory of money is included, illustrating the practical use of correlated but non-cointegrated regression relations.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105996"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theory and inference in non-cointegrated functional coefficient regression\",\"authors\":\"Ying Wang ,&nbsp;Peter C.B. Phillips ,&nbsp;Yundong Tu\",\"doi\":\"10.1016/j.jeconom.2025.105996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functional coefficient (FC) cointegrating regressions offer empirical investigators flexibility in modeling economic relationships by introducing covariates that influence the direction and intensity of comovement among nonstationary time series. FC regression models are also useful when formal cointegration is absent, in the sense that the equation errors may themselves be nonstationary, but where the nonstationary series display well-defined FC linkages that can be meaningfully interpreted as correlation measures involving the covariates. The present paper proposes new nonparametric estimators for such FC regression models where the nonstationary series display linkages that enable consistent estimation of the correlation measures between them. Specifically, we develop <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent estimators for the functional coefficient and establish their asymptotic distributions, which involve mixed normal limits that facilitate inference. Two novel features that appear in the limit theory are (i) the need for non-diagonal matrix normalization due to the presence of stationary and nonstationary components in the regression; and (ii) random bias elements that appear in the asymptotic distribution of the kernel estimators, again resulting from the nonstationary regression components. Numerical studies reveal that the proposed estimators achieve significant efficiency improvements compared to the estimators suggested in earlier work by Sun et al. (2011). Easily implementable specification tests with standard chi-square asymptotics are suggested to check for constancy of the functional coefficient. These tests are shown to have faster divergence rate under local alternatives and enjoy superior performance in simulations than tests proposed in Gan et al. (2014). An empirical application based on the quantity theory of money is included, illustrating the practical use of correlated but non-cointegrated regression relations.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"249 \",\"pages\":\"Article 105996\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625000508\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000508","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

功能系数(FC)协整回归通过引入影响非平稳时间序列之间运动方向和强度的协变量,为实证研究者提供了建立经济关系模型的灵活性。当没有正式的协整时,FC回归模型也很有用,因为方程误差本身可能是非平稳的,但在非平稳序列中显示出定义良好的FC联系,可以有意义地解释为涉及协变量的相关度量。本文提出了新的FC回归模型的非参数估计,其中非平稳序列显示了能够对它们之间的相关度量进行一致估计的联系。具体来说,我们开发了n个泛函系数的一致估计量,并建立了它们的渐近分布,其中包含便于推理的混合正态极限。极限理论中出现的两个新特征是:(i)由于回归中存在平稳和非平稳成分,因此需要非对角矩阵归一化;(ii)随机偏差元素出现在核估计量的渐近分布中,同样是由非平稳回归成分引起的。数值研究表明,与Sun等人(2011)在早期工作中提出的估计器相比,所提出的估计器实现了显着的效率提高。建议使用易于实现的标准卡方渐近规范检验来检验函数系数的恒常性。与Gan等人(2014)提出的测试相比,这些测试在局部替代方案下具有更快的发散率,并且在模拟中具有更好的性能。基于货币数量理论的实证应用,说明了相关但非协整回归关系的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theory and inference in non-cointegrated functional coefficient regression
Functional coefficient (FC) cointegrating regressions offer empirical investigators flexibility in modeling economic relationships by introducing covariates that influence the direction and intensity of comovement among nonstationary time series. FC regression models are also useful when formal cointegration is absent, in the sense that the equation errors may themselves be nonstationary, but where the nonstationary series display well-defined FC linkages that can be meaningfully interpreted as correlation measures involving the covariates. The present paper proposes new nonparametric estimators for such FC regression models where the nonstationary series display linkages that enable consistent estimation of the correlation measures between them. Specifically, we develop n-consistent estimators for the functional coefficient and establish their asymptotic distributions, which involve mixed normal limits that facilitate inference. Two novel features that appear in the limit theory are (i) the need for non-diagonal matrix normalization due to the presence of stationary and nonstationary components in the regression; and (ii) random bias elements that appear in the asymptotic distribution of the kernel estimators, again resulting from the nonstationary regression components. Numerical studies reveal that the proposed estimators achieve significant efficiency improvements compared to the estimators suggested in earlier work by Sun et al. (2011). Easily implementable specification tests with standard chi-square asymptotics are suggested to check for constancy of the functional coefficient. These tests are shown to have faster divergence rate under local alternatives and enjoy superior performance in simulations than tests proposed in Gan et al. (2014). An empirical application based on the quantity theory of money is included, illustrating the practical use of correlated but non-cointegrated regression relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信