DNA双链断裂修复中心的时空动力学

IF 3 3区 生物学 Q2 GENETICS & HEREDITY
Junyi Chen , Wenkang Zhang , Yuqi Ma , Xueqing Yan , Yugang Wang , Qi Ouyang , Min Wu , Gen Yang
{"title":"DNA双链断裂修复中心的时空动力学","authors":"Junyi Chen ,&nbsp;Wenkang Zhang ,&nbsp;Yuqi Ma ,&nbsp;Xueqing Yan ,&nbsp;Yugang Wang ,&nbsp;Qi Ouyang ,&nbsp;Min Wu ,&nbsp;Gen Yang","doi":"10.1016/j.dnarep.2025.103825","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past two decades, there has been intense debate regarding whether DNA double-strand breaks (DSBs) maintain a relatively stable position or cluster in mammalian cells. The clustering of DSB and its spatiotemporal properties remain unclear. Here, we provided evidence supporting DSB clustering, using laser microirradiation to induce high-precision damage in cells. The probability of 53BP1 foci clustering varies with the distance between them. 53BP1 foci clustering occurs during the early phase of DNA damage response (DDR) and the repair phase, but not during the repair plateau phase. The clustering at different phases has distinct implications for DNA repair. Clustering accelerates the DSB repair process. These results demonstrate that the extent of 53BP1 foci clustering is influenced by both temporal and spatial factors. Such findings could enhance our understanding of the mechanism of DSB clustering and the DDR, ultimately contributing to the development of improved DNA repair therapies for various diseases.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"149 ","pages":"Article 103825"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial dynamics of DNA double-strand break repair centers\",\"authors\":\"Junyi Chen ,&nbsp;Wenkang Zhang ,&nbsp;Yuqi Ma ,&nbsp;Xueqing Yan ,&nbsp;Yugang Wang ,&nbsp;Qi Ouyang ,&nbsp;Min Wu ,&nbsp;Gen Yang\",\"doi\":\"10.1016/j.dnarep.2025.103825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the past two decades, there has been intense debate regarding whether DNA double-strand breaks (DSBs) maintain a relatively stable position or cluster in mammalian cells. The clustering of DSB and its spatiotemporal properties remain unclear. Here, we provided evidence supporting DSB clustering, using laser microirradiation to induce high-precision damage in cells. The probability of 53BP1 foci clustering varies with the distance between them. 53BP1 foci clustering occurs during the early phase of DNA damage response (DDR) and the repair phase, but not during the repair plateau phase. The clustering at different phases has distinct implications for DNA repair. Clustering accelerates the DSB repair process. These results demonstrate that the extent of 53BP1 foci clustering is influenced by both temporal and spatial factors. Such findings could enhance our understanding of the mechanism of DSB clustering and the DDR, ultimately contributing to the development of improved DNA repair therapies for various diseases.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"149 \",\"pages\":\"Article 103825\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786425000217\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000217","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,关于DNA双链断裂(dsb)是否在哺乳动物细胞中保持相对稳定的位置或集群一直存在激烈的争论。DSB的聚类及其时空特性尚不清楚。在这里,我们提供了支持DSB聚类的证据,使用激光微照射诱导细胞高精度损伤。53BP1病灶聚类的概率随它们之间的距离而变化。53BP1病灶聚集发生在DNA损伤反应(DDR)早期和修复阶段,而不是在修复平台期。不同阶段的聚类对DNA修复有不同的意义。集群加速了DSB修复过程。这些结果表明,53BP1的焦点聚类程度受时间和空间因素的影响。这一发现有助于加深我们对DSB聚类和DDR机制的理解,最终有助于开发针对各种疾病的改进DNA修复疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal and spatial dynamics of DNA double-strand break repair centers
Over the past two decades, there has been intense debate regarding whether DNA double-strand breaks (DSBs) maintain a relatively stable position or cluster in mammalian cells. The clustering of DSB and its spatiotemporal properties remain unclear. Here, we provided evidence supporting DSB clustering, using laser microirradiation to induce high-precision damage in cells. The probability of 53BP1 foci clustering varies with the distance between them. 53BP1 foci clustering occurs during the early phase of DNA damage response (DDR) and the repair phase, but not during the repair plateau phase. The clustering at different phases has distinct implications for DNA repair. Clustering accelerates the DSB repair process. These results demonstrate that the extent of 53BP1 foci clustering is influenced by both temporal and spatial factors. Such findings could enhance our understanding of the mechanism of DSB clustering and the DDR, ultimately contributing to the development of improved DNA repair therapies for various diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信