加快格罗弗算法

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Stefan Creemers
{"title":"加快格罗弗算法","authors":"Stefan Creemers","doi":"10.1016/j.ejor.2025.02.034","DOIUrl":null,"url":null,"abstract":"To find one of the <mml:math altimg=\"si338.svg\" display=\"inline\"><mml:mi>M</mml:mi></mml:math> target entries in an unstructured database that has <mml:math altimg=\"si337.svg\" display=\"inline\"><mml:mi>N</mml:mi></mml:math> entries, Grover’s algorithm performs <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mfrac bevelled=\"true\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mfrac><mml:msqrt><mml:mrow><mml:mfrac bevelled=\"true\"><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:msqrt></mml:mrow></mml:math> iterations. In each iteration, a function is called that evaluates whether an entry is a target entry. Compared to a classical procedure, that requires <mml:math altimg=\"si339.svg\" display=\"inline\"><mml:mfrac bevelled=\"true\"><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:mfrac></mml:math> evaluations, Grover’s algorithm achieves a quadratic speedup. This quadratic speedup, combined with its general applicability as a search algorithm, have made Grover’s algorithms one of the most important (quantum) algorithms available today. A study to improve its runtime is more than justified. For this purpose, we investigate two speedup strategies: (1) reducing the number of iterations that are performed in each run of Grover’s algorithm and (2) partitioning the database. For each of these strategies, we not only execute Grover’s algorithm in parallel, but also explore the possibility to execute Grover’s algorithm in series on a single Quantum Processing Unit (QPU) as well as on multiple QPUs. For each combination of execution mode (serial, parallel, and serial/parallel) and speedup strategy, we show how to obtain optimal policies using closed-form expressions and a gradient-descent procedure. For a single QPU we obtain a speedup factor of 1.1382 when compared to a textbook implementation of Grover’s algorithm. If multiple QPUs are at our disposal, we obtain a speedup factor of at most <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo>.</mml:mo><mml:mn>1382</mml:mn><mml:msqrt><mml:mrow><mml:mi>Q</mml:mi></mml:mrow></mml:msqrt></mml:mrow></mml:math>, where <mml:math altimg=\"si279.svg\" display=\"inline\"><mml:mi>Q</mml:mi></mml:math> denotes the number of QPUs. In addition, we show that the dominant policies that minimize the expected number of Grover iterations also minimize the expected number of iterations that are performed per qubit.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speeding up Grover’s algorithm\",\"authors\":\"Stefan Creemers\",\"doi\":\"10.1016/j.ejor.2025.02.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To find one of the <mml:math altimg=\\\"si338.svg\\\" display=\\\"inline\\\"><mml:mi>M</mml:mi></mml:math> target entries in an unstructured database that has <mml:math altimg=\\\"si337.svg\\\" display=\\\"inline\\\"><mml:mi>N</mml:mi></mml:math> entries, Grover’s algorithm performs <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mfrac bevelled=\\\"true\\\"><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mfrac><mml:msqrt><mml:mrow><mml:mfrac bevelled=\\\"true\\\"><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:msqrt></mml:mrow></mml:math> iterations. In each iteration, a function is called that evaluates whether an entry is a target entry. Compared to a classical procedure, that requires <mml:math altimg=\\\"si339.svg\\\" display=\\\"inline\\\"><mml:mfrac bevelled=\\\"true\\\"><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:mfrac></mml:math> evaluations, Grover’s algorithm achieves a quadratic speedup. This quadratic speedup, combined with its general applicability as a search algorithm, have made Grover’s algorithms one of the most important (quantum) algorithms available today. A study to improve its runtime is more than justified. For this purpose, we investigate two speedup strategies: (1) reducing the number of iterations that are performed in each run of Grover’s algorithm and (2) partitioning the database. For each of these strategies, we not only execute Grover’s algorithm in parallel, but also explore the possibility to execute Grover’s algorithm in series on a single Quantum Processing Unit (QPU) as well as on multiple QPUs. For each combination of execution mode (serial, parallel, and serial/parallel) and speedup strategy, we show how to obtain optimal policies using closed-form expressions and a gradient-descent procedure. For a single QPU we obtain a speedup factor of 1.1382 when compared to a textbook implementation of Grover’s algorithm. If multiple QPUs are at our disposal, we obtain a speedup factor of at most <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo>.</mml:mo><mml:mn>1382</mml:mn><mml:msqrt><mml:mrow><mml:mi>Q</mml:mi></mml:mrow></mml:msqrt></mml:mrow></mml:math>, where <mml:math altimg=\\\"si279.svg\\\" display=\\\"inline\\\"><mml:mi>Q</mml:mi></mml:math> denotes the number of QPUs. In addition, we show that the dominant policies that minimize the expected number of Grover iterations also minimize the expected number of iterations that are performed per qubit.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.02.034\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.02.034","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了在一个有N个条目的非结构化数据库中找到M个目标条目中的一个,Grover算法执行π4NM迭代。在每次迭代中,调用一个函数来评估一个条目是否为目标条目。与需要NM计算的经典过程相比,Grover算法实现了二次加速。这种二次加速,加上它作为搜索算法的普遍适用性,使Grover算法成为当今最重要的(量子)算法之一。一项改善其运行时间的研究是非常合理的。为此,我们研究了两种加速策略:(1)减少每次运行Grover算法时执行的迭代次数;(2)对数据库进行分区。对于每一种策略,我们不仅并行执行Grover算法,而且还探索了在单个量子处理单元(QPU)以及多个QPU上串行执行Grover算法的可能性。对于每种执行模式(串行、并行和串行/并行)和加速策略的组合,我们展示了如何使用封闭形式表达式和梯度下降过程获得最优策略。与Grover算法的教科书实现相比,对于单个QPU,我们获得了1.1382的加速因子。如果有多个qpu可供我们使用,我们得到的加速因子最多为1.1382Q,其中Q表示qpu的数量。此外,我们还展示了最小化Grover迭代的预期次数的主导策略也最小化了每个量子位执行的预期迭代次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speeding up Grover’s algorithm
To find one of the M target entries in an unstructured database that has N entries, Grover’s algorithm performs π4NM iterations. In each iteration, a function is called that evaluates whether an entry is a target entry. Compared to a classical procedure, that requires NM evaluations, Grover’s algorithm achieves a quadratic speedup. This quadratic speedup, combined with its general applicability as a search algorithm, have made Grover’s algorithms one of the most important (quantum) algorithms available today. A study to improve its runtime is more than justified. For this purpose, we investigate two speedup strategies: (1) reducing the number of iterations that are performed in each run of Grover’s algorithm and (2) partitioning the database. For each of these strategies, we not only execute Grover’s algorithm in parallel, but also explore the possibility to execute Grover’s algorithm in series on a single Quantum Processing Unit (QPU) as well as on multiple QPUs. For each combination of execution mode (serial, parallel, and serial/parallel) and speedup strategy, we show how to obtain optimal policies using closed-form expressions and a gradient-descent procedure. For a single QPU we obtain a speedup factor of 1.1382 when compared to a textbook implementation of Grover’s algorithm. If multiple QPUs are at our disposal, we obtain a speedup factor of at most 1.1382Q, where Q denotes the number of QPUs. In addition, we show that the dominant policies that minimize the expected number of Grover iterations also minimize the expected number of iterations that are performed per qubit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信