鲁棒非刚体点云对应的等变局部参考框架优化

Ling Wang;Runfa Chen;Fuchun Sun;Xinzhou Wang;Kai Sun;Chengliang Zhong;Guangyuan Fu;Yikai Wang
{"title":"鲁棒非刚体点云对应的等变局部参考框架优化","authors":"Ling Wang;Runfa Chen;Fuchun Sun;Xinzhou Wang;Kai Sun;Chengliang Zhong;Guangyuan Fu;Yikai Wang","doi":"10.1109/TIP.2025.3550006","DOIUrl":null,"url":null,"abstract":"Unsupervised non-rigid point cloud shape correspondence underpins a multitude of 3D vision tasks, yet itself is non-trivial given the exponential complexity stemming from inter-point degree-of-freedom, i.e., pose transformations. Based on the assumption of local rigidity, one solution for reducing complexity is to decompose the overall shape into independent local regions using Local Reference Frames (LRFs) that are equivariant to SE(3) transformations. However, the focus solely on local structure neglects global geometric contexts, resulting in less distinctive LRFs that lack crucial semantic information necessary for effective matching. Furthermore, such complexity introduces out-of-distribution geometric contexts during inference, thus complicating generalization. To this end, we introduce 1) <sc>EquiShape</small>, a novel structure tailored to learn pair-wise LRFs with global structural cues for both spatial and semantic consistency, and 2) LRF-Refine, an optimization strategy generally applicable to LRF-based methods, aimed at addressing the generalization challenges. Specifically, for <sc>EquiShape</small>, we employ cross-talk within separate equivariant graph neural networks (Cross-GVP) to build long-range dependencies to compensate for the lack of semantic information in local structure modeling, deducing pair-wise independent SE(3)-equivariant LRF vectors for each point. For LRF-Refine, the optimization adjusts LRFs within specific contexts and knowledge, enhancing the geometric and semantic generalizability of point features. Our overall framework surpasses the state-of-the-art methods by a large margin on three benchmarks. Codes are available at <uri>https://github.com/2019EPWL/EquiShape</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1980-1994"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant Local Reference Frames With Optimization for Robust Non-Rigid Point Cloud Correspondence\",\"authors\":\"Ling Wang;Runfa Chen;Fuchun Sun;Xinzhou Wang;Kai Sun;Chengliang Zhong;Guangyuan Fu;Yikai Wang\",\"doi\":\"10.1109/TIP.2025.3550006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised non-rigid point cloud shape correspondence underpins a multitude of 3D vision tasks, yet itself is non-trivial given the exponential complexity stemming from inter-point degree-of-freedom, i.e., pose transformations. Based on the assumption of local rigidity, one solution for reducing complexity is to decompose the overall shape into independent local regions using Local Reference Frames (LRFs) that are equivariant to SE(3) transformations. However, the focus solely on local structure neglects global geometric contexts, resulting in less distinctive LRFs that lack crucial semantic information necessary for effective matching. Furthermore, such complexity introduces out-of-distribution geometric contexts during inference, thus complicating generalization. To this end, we introduce 1) <sc>EquiShape</small>, a novel structure tailored to learn pair-wise LRFs with global structural cues for both spatial and semantic consistency, and 2) LRF-Refine, an optimization strategy generally applicable to LRF-based methods, aimed at addressing the generalization challenges. Specifically, for <sc>EquiShape</small>, we employ cross-talk within separate equivariant graph neural networks (Cross-GVP) to build long-range dependencies to compensate for the lack of semantic information in local structure modeling, deducing pair-wise independent SE(3)-equivariant LRF vectors for each point. For LRF-Refine, the optimization adjusts LRFs within specific contexts and knowledge, enhancing the geometric and semantic generalizability of point features. Our overall framework surpasses the state-of-the-art methods by a large margin on three benchmarks. Codes are available at <uri>https://github.com/2019EPWL/EquiShape</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"1980-1994\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930589/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930589/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无监督的非刚性点云形状对应支撑着大量的3D视觉任务,但鉴于点间自由度(即姿态变换)的指数复杂性,其本身也是非琐碎的。基于局部刚性假设,降低复杂性的一种解决方案是使用等价于SE(3)变换的局部参考帧(LRFs)将整体形状分解为独立的局部区域。然而,仅仅关注局部结构忽略了全局几何上下文,导致缺乏有效匹配所需的关键语义信息的lrf特征不明显。此外,这种复杂性在推理过程中引入了分布外的几何上下文,从而使泛化变得复杂。为此,我们介绍了1)EquiShape,一种专门用于学习具有空间和语义一致性全局结构线索的配对lrf的新结构,以及2)LRF-Refine,一种适用于基于lrf的方法的优化策略,旨在解决泛化挑战。具体来说,对于EquiShape,我们在单独的等变图神经网络(Cross-GVP)中使用串扰来构建远程依赖关系,以补偿局部结构建模中语义信息的缺乏,为每个点推导成对独立的SE(3)-等变LRF向量。对于LRF-Refine,优化在特定的上下文和知识中调整lrf,增强点特征的几何和语义泛化性。我们的整体框架在三个基准上大大超过了最先进的方法。代码可在https://github.com/2019EPWL/EquiShape上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant Local Reference Frames With Optimization for Robust Non-Rigid Point Cloud Correspondence
Unsupervised non-rigid point cloud shape correspondence underpins a multitude of 3D vision tasks, yet itself is non-trivial given the exponential complexity stemming from inter-point degree-of-freedom, i.e., pose transformations. Based on the assumption of local rigidity, one solution for reducing complexity is to decompose the overall shape into independent local regions using Local Reference Frames (LRFs) that are equivariant to SE(3) transformations. However, the focus solely on local structure neglects global geometric contexts, resulting in less distinctive LRFs that lack crucial semantic information necessary for effective matching. Furthermore, such complexity introduces out-of-distribution geometric contexts during inference, thus complicating generalization. To this end, we introduce 1) EquiShape, a novel structure tailored to learn pair-wise LRFs with global structural cues for both spatial and semantic consistency, and 2) LRF-Refine, an optimization strategy generally applicable to LRF-based methods, aimed at addressing the generalization challenges. Specifically, for EquiShape, we employ cross-talk within separate equivariant graph neural networks (Cross-GVP) to build long-range dependencies to compensate for the lack of semantic information in local structure modeling, deducing pair-wise independent SE(3)-equivariant LRF vectors for each point. For LRF-Refine, the optimization adjusts LRFs within specific contexts and knowledge, enhancing the geometric and semantic generalizability of point features. Our overall framework surpasses the state-of-the-art methods by a large margin on three benchmarks. Codes are available at https://github.com/2019EPWL/EquiShape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信