基于低成本计算的离子液体局部电子结构的有效预测

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Frances K. Towers Tompkins, Lewis G. Parker, Richard M. Fogarty, Jake M. Seymour, Rebecca Rowe, Robert G. Palgrave, Richard P. Matthews, Roger A. Bennett, Patricia A. Hunt and Kevin R. J. Lovelock
{"title":"基于低成本计算的离子液体局部电子结构的有效预测","authors":"Frances K. Towers Tompkins, Lewis G. Parker, Richard M. Fogarty, Jake M. Seymour, Rebecca Rowe, Robert G. Palgrave, Richard P. Matthews, Roger A. Bennett, Patricia A. Hunt and Kevin R. J. Lovelock","doi":"10.1039/D5CP00892A","DOIUrl":null,"url":null,"abstract":"<p >Understanding and predicting ionic liquid (IL) electronic structure is crucial for their development, as local, atomic-scale electrostatic interactions control both the ion–ion and ion–dipole interactions that underpin all applications of ILs. Core-level binding energies, <em>E</em><small><sub>B</sub></small>(core), from X-ray photoelectron spectroscopy (XPS) experiments capture the electrostatic potentials at nuclei, thus offering significant insight into IL local electronic structure. However, our ability to measure XPS for the many thousands of possible ILs is limited. Here we use an extensive experimental XPS dataset comprised of 44 ILs to comprehensively validate the ability of a very low-cost and technically accessible calculation method, lone-ion-SMD (solvation model based on density) density functional theory (DFT), to produce high quality <em>E</em><small><sub>B</sub></small>(core) for 14 cations and 30 anions. Our method removes the need for expensive and technically challenging calculation methods to obtain <em>E</em><small><sub>B</sub></small>(core), thus giving the possibility to efficiently predict local electronic structure and understand electrostatic interactions at the atomic scale. We demonstrate the ability of the lone-ion SMD method to predict the speciation of halometallate anions in ILs.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 17","pages":" 8803-8812"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp00892a?page=search","citationCount":"0","resultStr":"{\"title\":\"Efficient prediction of the local electronic structure of ionic liquids from low-cost calculations†\",\"authors\":\"Frances K. Towers Tompkins, Lewis G. Parker, Richard M. Fogarty, Jake M. Seymour, Rebecca Rowe, Robert G. Palgrave, Richard P. Matthews, Roger A. Bennett, Patricia A. Hunt and Kevin R. J. Lovelock\",\"doi\":\"10.1039/D5CP00892A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding and predicting ionic liquid (IL) electronic structure is crucial for their development, as local, atomic-scale electrostatic interactions control both the ion–ion and ion–dipole interactions that underpin all applications of ILs. Core-level binding energies, <em>E</em><small><sub>B</sub></small>(core), from X-ray photoelectron spectroscopy (XPS) experiments capture the electrostatic potentials at nuclei, thus offering significant insight into IL local electronic structure. However, our ability to measure XPS for the many thousands of possible ILs is limited. Here we use an extensive experimental XPS dataset comprised of 44 ILs to comprehensively validate the ability of a very low-cost and technically accessible calculation method, lone-ion-SMD (solvation model based on density) density functional theory (DFT), to produce high quality <em>E</em><small><sub>B</sub></small>(core) for 14 cations and 30 anions. Our method removes the need for expensive and technically challenging calculation methods to obtain <em>E</em><small><sub>B</sub></small>(core), thus giving the possibility to efficiently predict local electronic structure and understand electrostatic interactions at the atomic scale. We demonstrate the ability of the lone-ion SMD method to predict the speciation of halometallate anions in ILs.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 17\",\"pages\":\" 8803-8812\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp00892a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00892a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00892a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

理解和预测离子液体(IL)的电子结构对它们的发展至关重要,因为局部的、原子尺度的静电相互作用控制着离子-离子和离子-偶极子相互作用,而离子-离子和离子-偶极子相互作用是支撑离子液体所有应用的基础。从x射线光电子能谱(XPS)实验中获得的核能级结合能EB(core)捕获了原子核的静电势,从而对IL局部电子结构提供了重要的见解。但是,我们测量数千种可能的il的XPS的能力是有限的。在这里,我们使用了一个由44个il组成的广泛的实验XPS数据集来全面验证一种非常低成本和技术上可行的计算方法的能力,即孤离子- smd(基于密度的溶剂化模型)密度泛函理论(DFT),可以为14个阳离子和30个阴离子产生高质量的核心能级结合能,EB(核心)。我们的方法不需要昂贵且技术上具有挑战性的计算方法来获得EB(核心),从而有可能预测局部电子结构并理解原子尺度上的静电相互作用。我们证明了单离子SMD方法预测il中卤金属酸盐阴离子形成的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient prediction of the local electronic structure of ionic liquids from low-cost calculations†

Efficient prediction of the local electronic structure of ionic liquids from low-cost calculations†

Understanding and predicting ionic liquid (IL) electronic structure is crucial for their development, as local, atomic-scale electrostatic interactions control both the ion–ion and ion–dipole interactions that underpin all applications of ILs. Core-level binding energies, EB(core), from X-ray photoelectron spectroscopy (XPS) experiments capture the electrostatic potentials at nuclei, thus offering significant insight into IL local electronic structure. However, our ability to measure XPS for the many thousands of possible ILs is limited. Here we use an extensive experimental XPS dataset comprised of 44 ILs to comprehensively validate the ability of a very low-cost and technically accessible calculation method, lone-ion-SMD (solvation model based on density) density functional theory (DFT), to produce high quality EB(core) for 14 cations and 30 anions. Our method removes the need for expensive and technically challenging calculation methods to obtain EB(core), thus giving the possibility to efficiently predict local electronic structure and understand electrostatic interactions at the atomic scale. We demonstrate the ability of the lone-ion SMD method to predict the speciation of halometallate anions in ILs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信