{"title":"交联共聚物和支化缩聚物的z -平均值","authors":"Rolf Bachmann, John T. Bendler","doi":"10.1002/mats.202400073","DOIUrl":null,"url":null,"abstract":"<p>The theory of Odle et al. for the z-average of branched polycondensates is extended to the general case of co-cross-linking of primary chains with different functionalities. Examples are given for free radical and step growth polymerization. For polycondensates, assuming surplus of one functionality and complete conversion, a simple formula for the degree of polymerization <i>DP</i><sub><i>z</i></sub> for functional groups is derived:\n\n </p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z-Average of Cross-Linked Copolymers and Branched Polycondensates\",\"authors\":\"Rolf Bachmann, John T. Bendler\",\"doi\":\"10.1002/mats.202400073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The theory of Odle et al. for the z-average of branched polycondensates is extended to the general case of co-cross-linking of primary chains with different functionalities. Examples are given for free radical and step growth polymerization. For polycondensates, assuming surplus of one functionality and complete conversion, a simple formula for the degree of polymerization <i>DP</i><sub><i>z</i></sub> for functional groups is derived:\\n\\n </p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":\"34 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Z-Average of Cross-Linked Copolymers and Branched Polycondensates
The theory of Odle et al. for the z-average of branched polycondensates is extended to the general case of co-cross-linking of primary chains with different functionalities. Examples are given for free radical and step growth polymerization. For polycondensates, assuming surplus of one functionality and complete conversion, a simple formula for the degree of polymerization DPz for functional groups is derived:
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.