双s方案纳米纤维素Ag2WO4/NiO/MoO3三级异质结†实现了光催化诺氟沙星降解

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Shabnam Sambyal , Vinay Chauhan , Pooja Shandilya , Aashish Priye
{"title":"双s方案纳米纤维素Ag2WO4/NiO/MoO3三级异质结†实现了光催化诺氟沙星降解","authors":"Shabnam Sambyal ,&nbsp;Vinay Chauhan ,&nbsp;Pooja Shandilya ,&nbsp;Aashish Priye","doi":"10.1039/d4cy01243g","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating presence of antibiotic contaminants, such as norfloxacin (NFX), in water resources poses a pressing environmental challenge, demanding the development of innovative and sustainable remediation technologies. Herein, we report the design and fabrication of a novel S-scheme heterojunction photocatalyst, comprising Ag<sub>2</sub>WO<sub>4</sub>, NiO, and MoO<sub>3</sub> nanoparticles anchored onto a nanocellulose matrix (NC–ANM), for the efficient photocatalytic degradation of NFX under visible light irradiation. Comprehensive structural, morphological, and physicochemical characterization techniques, including XRD, XPS, FTIR, FESEM, and HRTEM, corroborated the successful formation of the heterojunction and its constituent phases. Optical and electrochemical analyses, utilizing UV-vis DRS, PL, and EIS, revealed enhanced visible light absorption, efficient charge separation, and prolonged charge carrier lifetimes, key attributes underpinning the superior photocatalytic activity of the NC–ANM heterojunction. Mechanistic investigations, employing LC-MS and ESR spectroscopy, confirmed the S-scheme charge transfer pathway, leading to the generation of reactive oxygen species (˙OH and ˙O<sub>2</sub><sup>−</sup>) that efficiently degrade NFX. The heterojunction demonstrated remarkable photocatalytic performance, achieving 99.6% NFX degradation within 30 minutes under optimized conditions. This study not only showcases the potential of NC–ANM as a highly efficient and sustainable photocatalyst for wastewater treatment but also provides valuable insights into the design and engineering of advanced S-scheme heterojunctions for environmental remediation applications.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 6","pages":"Pages 1865-1881"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic norfloxacin degradation enabled by a dual S-scheme nanocellulose-based Ag2WO4/NiO/MoO3 tertiary heterojunction†\",\"authors\":\"Shabnam Sambyal ,&nbsp;Vinay Chauhan ,&nbsp;Pooja Shandilya ,&nbsp;Aashish Priye\",\"doi\":\"10.1039/d4cy01243g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating presence of antibiotic contaminants, such as norfloxacin (NFX), in water resources poses a pressing environmental challenge, demanding the development of innovative and sustainable remediation technologies. Herein, we report the design and fabrication of a novel S-scheme heterojunction photocatalyst, comprising Ag<sub>2</sub>WO<sub>4</sub>, NiO, and MoO<sub>3</sub> nanoparticles anchored onto a nanocellulose matrix (NC–ANM), for the efficient photocatalytic degradation of NFX under visible light irradiation. Comprehensive structural, morphological, and physicochemical characterization techniques, including XRD, XPS, FTIR, FESEM, and HRTEM, corroborated the successful formation of the heterojunction and its constituent phases. Optical and electrochemical analyses, utilizing UV-vis DRS, PL, and EIS, revealed enhanced visible light absorption, efficient charge separation, and prolonged charge carrier lifetimes, key attributes underpinning the superior photocatalytic activity of the NC–ANM heterojunction. Mechanistic investigations, employing LC-MS and ESR spectroscopy, confirmed the S-scheme charge transfer pathway, leading to the generation of reactive oxygen species (˙OH and ˙O<sub>2</sub><sup>−</sup>) that efficiently degrade NFX. The heterojunction demonstrated remarkable photocatalytic performance, achieving 99.6% NFX degradation within 30 minutes under optimized conditions. This study not only showcases the potential of NC–ANM as a highly efficient and sustainable photocatalyst for wastewater treatment but also provides valuable insights into the design and engineering of advanced S-scheme heterojunctions for environmental remediation applications.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"15 6\",\"pages\":\"Pages 1865-1881\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475325000607\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000607","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水资源中诺氟沙星(NFX)等抗生素污染物的不断增加对环境构成了紧迫的挑战,要求开发创新和可持续的修复技术。本文报道了一种新型s型异质结光催化剂的设计和制造,该催化剂由Ag2WO4, NiO和MoO3纳米颗粒固定在纳米纤维素基质(NC-ANM)上,用于可见光照射下NFX的有效光催化降解。XRD、XPS、FTIR、FESEM和HRTEM等综合结构、形态和物理化学表征技术证实了异质结及其组成相的成功形成。光学和电化学分析,利用UV-vis DRS, PL和EIS,揭示了增强的可见光吸收,有效的电荷分离和延长的电荷载流子寿命,这是NC-ANM异质结优越的光催化活性的关键属性。利用LC-MS和ESR光谱进行的机理研究证实了s方案电荷转移途径,导致活性氧(˙OH和˙O2−)的产生,有效地降解NFX。在优化条件下,异质结表现出优异的光催化性能,在30分钟内实现了99.6%的NFX降解。这项研究不仅展示了NC-ANM作为一种高效和可持续的废水处理光催化剂的潜力,而且为环境修复应用的先进S-scheme异质结的设计和工程提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocatalytic norfloxacin degradation enabled by a dual S-scheme nanocellulose-based Ag2WO4/NiO/MoO3 tertiary heterojunction†

Photocatalytic norfloxacin degradation enabled by a dual S-scheme nanocellulose-based Ag2WO4/NiO/MoO3 tertiary heterojunction†
The escalating presence of antibiotic contaminants, such as norfloxacin (NFX), in water resources poses a pressing environmental challenge, demanding the development of innovative and sustainable remediation technologies. Herein, we report the design and fabrication of a novel S-scheme heterojunction photocatalyst, comprising Ag2WO4, NiO, and MoO3 nanoparticles anchored onto a nanocellulose matrix (NC–ANM), for the efficient photocatalytic degradation of NFX under visible light irradiation. Comprehensive structural, morphological, and physicochemical characterization techniques, including XRD, XPS, FTIR, FESEM, and HRTEM, corroborated the successful formation of the heterojunction and its constituent phases. Optical and electrochemical analyses, utilizing UV-vis DRS, PL, and EIS, revealed enhanced visible light absorption, efficient charge separation, and prolonged charge carrier lifetimes, key attributes underpinning the superior photocatalytic activity of the NC–ANM heterojunction. Mechanistic investigations, employing LC-MS and ESR spectroscopy, confirmed the S-scheme charge transfer pathway, leading to the generation of reactive oxygen species (˙OH and ˙O2) that efficiently degrade NFX. The heterojunction demonstrated remarkable photocatalytic performance, achieving 99.6% NFX degradation within 30 minutes under optimized conditions. This study not only showcases the potential of NC–ANM as a highly efficient and sustainable photocatalyst for wastewater treatment but also provides valuable insights into the design and engineering of advanced S-scheme heterojunctions for environmental remediation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信