击败早高峰:生存分析通知dnn与协同过滤预测出发时间

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ekin Ugurel;Gaoang Wang
{"title":"击败早高峰:生存分析通知dnn与协同过滤预测出发时间","authors":"Ekin Ugurel;Gaoang Wang","doi":"10.1109/OJITS.2025.3544301","DOIUrl":null,"url":null,"abstract":"Congestion due to morning and evening traffic peaks has caused economic losses amounting to billions of dollars annually. Thus, accurately predicting the departure time of commuters is of interest to transportation planners, engineers, and elected officials alike. We develop a statistically-informed deep learning approach to improve commuter departure time prediction models. Specifically, we leverage elements of the proportional hazards model, a class of time-to-event prediction approaches, to augment vanilla deep neural network (DNN) architectures. The proposed approach also employs collaborative filtering to segment the commuter population into distinct behavioral classes, allowing tailored predictions for specific commuter profiles. We find that our class of survival analysis-enhanced DNNs outperforms conventional neural networks in predicting trip departure times, while also offering more interpretability through the hazard coefficients.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"266-275"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897825","citationCount":"0","resultStr":"{\"title\":\"Beat the Morning Rush: Survival Analysis-Informed DNNs With Collaborative Filtering to Predict Departure Times\",\"authors\":\"Ekin Ugurel;Gaoang Wang\",\"doi\":\"10.1109/OJITS.2025.3544301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Congestion due to morning and evening traffic peaks has caused economic losses amounting to billions of dollars annually. Thus, accurately predicting the departure time of commuters is of interest to transportation planners, engineers, and elected officials alike. We develop a statistically-informed deep learning approach to improve commuter departure time prediction models. Specifically, we leverage elements of the proportional hazards model, a class of time-to-event prediction approaches, to augment vanilla deep neural network (DNN) architectures. The proposed approach also employs collaborative filtering to segment the commuter population into distinct behavioral classes, allowing tailored predictions for specific commuter profiles. We find that our class of survival analysis-enhanced DNNs outperforms conventional neural networks in predicting trip departure times, while also offering more interpretability through the hazard coefficients.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"6 \",\"pages\":\"266-275\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897825\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10897825/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10897825/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

早晚交通高峰造成的拥堵每年造成数十亿美元的经济损失。因此,准确预测通勤者的出发时间对交通规划者、工程师和民选官员都很有意义。我们开发了一种统计信息深度学习方法来改进通勤者出发时间预测模型。具体来说,我们利用比例风险模型(一类时间到事件的预测方法)的元素来增强普通深度神经网络(DNN)架构。该方法还采用协同过滤,将通勤人群划分为不同的行为类别,从而对特定的通勤人群进行量身定制的预测。我们发现我们的生存分析增强dnn在预测旅行出发时间方面优于传统神经网络,同时也通过危险系数提供了更多的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beat the Morning Rush: Survival Analysis-Informed DNNs With Collaborative Filtering to Predict Departure Times
Congestion due to morning and evening traffic peaks has caused economic losses amounting to billions of dollars annually. Thus, accurately predicting the departure time of commuters is of interest to transportation planners, engineers, and elected officials alike. We develop a statistically-informed deep learning approach to improve commuter departure time prediction models. Specifically, we leverage elements of the proportional hazards model, a class of time-to-event prediction approaches, to augment vanilla deep neural network (DNN) architectures. The proposed approach also employs collaborative filtering to segment the commuter population into distinct behavioral classes, allowing tailored predictions for specific commuter profiles. We find that our class of survival analysis-enhanced DNNs outperforms conventional neural networks in predicting trip departure times, while also offering more interpretability through the hazard coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信