基于时空图的台风作用下电力系统快速恢复力评估

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuhong Zhu;Yongzhi Zhou;Yong Sun;Wei Li
{"title":"基于时空图的台风作用下电力系统快速恢复力评估","authors":"Yuhong Zhu;Yongzhi Zhou;Yong Sun;Wei Li","doi":"10.1109/JSYST.2024.3496754","DOIUrl":null,"url":null,"abstract":"Despite great progress in modeling the resilience response of power systems under extreme events, it remains difficult to assess the evolutionary trend of system performance at a specific observation moment during such events. Conventional simulation-based assessment methods are typically time-consuming because a series of scenario-specific optimization problems must be solved as a prerequisite. Thus, a spatial-temporal graph-based approach is proposed for fast resilience assessment to provide timely warning information. The key factors, including observable meteorological information, component vulnerabilities, emergency dispatch, and repair strategies, are modeled in the form of matrices that depict the spatial and temporal relationships. Based on these matrices, a spatiotemporal graph neural network is developed to fit the mapping relationship between observable states and resilience indicators, which is trained offline and enables fast assessment via forward inference. Regarding the uncertainties of various extreme scenarios, the evaluation procedure combines the whole-process simulation and single-state replay technologies, which can respectively consider the uncertainties and provide deterministic data labeling for assessment. Finally, the effectiveness of the proposed method is verified on the benchmarks, including the IEEE 118-bus system and a realistic 2868-bus system.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"19 1","pages":"8-19"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Resilience Assessment for Power Systems Under Typhoons Based on Spatial Temporal Graphs\",\"authors\":\"Yuhong Zhu;Yongzhi Zhou;Yong Sun;Wei Li\",\"doi\":\"10.1109/JSYST.2024.3496754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite great progress in modeling the resilience response of power systems under extreme events, it remains difficult to assess the evolutionary trend of system performance at a specific observation moment during such events. Conventional simulation-based assessment methods are typically time-consuming because a series of scenario-specific optimization problems must be solved as a prerequisite. Thus, a spatial-temporal graph-based approach is proposed for fast resilience assessment to provide timely warning information. The key factors, including observable meteorological information, component vulnerabilities, emergency dispatch, and repair strategies, are modeled in the form of matrices that depict the spatial and temporal relationships. Based on these matrices, a spatiotemporal graph neural network is developed to fit the mapping relationship between observable states and resilience indicators, which is trained offline and enables fast assessment via forward inference. Regarding the uncertainties of various extreme scenarios, the evaluation procedure combines the whole-process simulation and single-state replay technologies, which can respectively consider the uncertainties and provide deterministic data labeling for assessment. Finally, the effectiveness of the proposed method is verified on the benchmarks, including the IEEE 118-bus system and a realistic 2868-bus system.\",\"PeriodicalId\":55017,\"journal\":{\"name\":\"IEEE Systems Journal\",\"volume\":\"19 1\",\"pages\":\"8-19\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772695/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10772695/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

尽管在极端事件下电力系统的弹性响应建模方面取得了很大进展,但在极端事件中,系统性能在特定观测时刻的演化趋势仍然难以评估。传统的基于模拟的评估方法通常非常耗时,因为必须先解决一系列特定于场景的优化问题。为此,提出了一种基于时空图的快速恢复力评估方法,以提供及时的预警信息。关键因素,包括可观测气象信息、组件漏洞、应急调度和修复策略,以矩阵的形式建模,描述了空间和时间关系。基于这些矩阵,建立了一个时空图神经网络来拟合可观测状态与弹性指标之间的映射关系,该网络离线训练并通过前向推理实现快速评估。针对各种极端情景的不确定性,评估程序结合了全过程模拟和单状态重播技术,可以分别考虑不确定性,为评估提供确定性数据标注。最后,在ieee118总线系统和实际2868总线系统的基准测试中验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Resilience Assessment for Power Systems Under Typhoons Based on Spatial Temporal Graphs
Despite great progress in modeling the resilience response of power systems under extreme events, it remains difficult to assess the evolutionary trend of system performance at a specific observation moment during such events. Conventional simulation-based assessment methods are typically time-consuming because a series of scenario-specific optimization problems must be solved as a prerequisite. Thus, a spatial-temporal graph-based approach is proposed for fast resilience assessment to provide timely warning information. The key factors, including observable meteorological information, component vulnerabilities, emergency dispatch, and repair strategies, are modeled in the form of matrices that depict the spatial and temporal relationships. Based on these matrices, a spatiotemporal graph neural network is developed to fit the mapping relationship between observable states and resilience indicators, which is trained offline and enables fast assessment via forward inference. Regarding the uncertainties of various extreme scenarios, the evaluation procedure combines the whole-process simulation and single-state replay technologies, which can respectively consider the uncertainties and provide deterministic data labeling for assessment. Finally, the effectiveness of the proposed method is verified on the benchmarks, including the IEEE 118-bus system and a realistic 2868-bus system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Journal
IEEE Systems Journal 工程技术-电信学
CiteScore
9.80
自引率
6.80%
发文量
572
审稿时长
4.9 months
期刊介绍: This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信