在奇数配对中投掷

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Oswin Aichholzer , Anna Brötzner , Daniel Perz , Patrick Schnider
{"title":"在奇数配对中投掷","authors":"Oswin Aichholzer ,&nbsp;Anna Brötzner ,&nbsp;Daniel Perz ,&nbsp;Patrick Schnider","doi":"10.1016/j.comgeo.2025.102184","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>P</mi></math></span> be a set of <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> points in the plane in general position. We define the graph <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> whose vertex set is the set of all plane matchings on <span><math><mi>P</mi></math></span> with exactly <em>m</em> edges. Two vertices in <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> are connected if the two corresponding matchings have <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span> edges in common. In this work we show that <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> is connected and give an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> on its diameter. Moreover, we present a lower bound of <span><math><mi>n</mi><mo>−</mo><mn>2</mn></math></span> and an upper bound of <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for the diameter of <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> for <span><math><mi>P</mi></math></span> in convex position.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102184"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flips in odd matchings\",\"authors\":\"Oswin Aichholzer ,&nbsp;Anna Brötzner ,&nbsp;Daniel Perz ,&nbsp;Patrick Schnider\",\"doi\":\"10.1016/j.comgeo.2025.102184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>P</mi></math></span> be a set of <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> points in the plane in general position. We define the graph <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> whose vertex set is the set of all plane matchings on <span><math><mi>P</mi></math></span> with exactly <em>m</em> edges. Two vertices in <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> are connected if the two corresponding matchings have <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span> edges in common. In this work we show that <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> is connected and give an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> on its diameter. Moreover, we present a lower bound of <span><math><mi>n</mi><mo>−</mo><mn>2</mn></math></span> and an upper bound of <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for the diameter of <span><math><mi>G</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> for <span><math><mi>P</mi></math></span> in convex position.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"129 \",\"pages\":\"Article 102184\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772125000227\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000227","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设P是平面上一般位置上n=2m+1个点的集合。定义图GMP,其顶点集是P上所有平面匹配的恰好m条边的集合。在GMP中,如果两个对应的匹配有m−1条共同的边,则两个顶点是连通的。在这项工作中,我们证明了GMP是连通的,并给出了其直径的上界O(n2)。此外,我们给出了P在凸位置的GMP直径的下界n−2和上界2n−2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flips in odd matchings
Let P be a set of n=2m+1 points in the plane in general position. We define the graph GMP whose vertex set is the set of all plane matchings on P with exactly m edges. Two vertices in GMP are connected if the two corresponding matchings have m1 edges in common. In this work we show that GMP is connected and give an upper bound of O(n2) on its diameter. Moreover, we present a lower bound of n2 and an upper bound of 2n2 for the diameter of GMP for P in convex position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信