大型空间太阳能电站刚柔耦合动力学建模及分数阶滑模控制

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE
Shuo Han , Haoyi Wang , Feng Gao , Weiran Yao , Guanghui Sun , Xiangyu Shao
{"title":"大型空间太阳能电站刚柔耦合动力学建模及分数阶滑模控制","authors":"Shuo Han ,&nbsp;Haoyi Wang ,&nbsp;Feng Gao ,&nbsp;Weiran Yao ,&nbsp;Guanghui Sun ,&nbsp;Xiangyu Shao","doi":"10.1016/j.actaastro.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Precise on-orbit assembly of Space Solar Power Station imposes great challenges on its effective rigid–flexible coupling dynamics modeling and low vibration control. This paper presents an integrated framework combining a reduced-order dynamics model and an improved fractional-order controller of Space Solar Power Station. The dynamics model, developed through Lagrangian equations and finite element methods, reduces system complexity from tens of thousands to tens of degrees of freedom while preserving essential dynamic properties. The fractional-order controller is proposed on this foundation, containing a robust fractional-order sliding surface for chattering suppression and the super-twisting algorithm for uncertainty and disturbance rejection. Simulations of three critical assembly phases are conducted to demonstrate the closed-loop behavior, simulation results show significant improvements in convergence time (reductions ranging from 44.6% for truss docking to 78.2% for antenna adjustment) and vibration suppression (vibration mode peaks decrease from 49 to 9 for <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and 65 to almost 0 for <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) compared to the PID controller, verifying the effectiveness of the proposed control strategy.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"232 ","pages":"Pages 164-173"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigid–flexible coupling dynamics modeling and fractional-order sliding mode control for large space solar power stations\",\"authors\":\"Shuo Han ,&nbsp;Haoyi Wang ,&nbsp;Feng Gao ,&nbsp;Weiran Yao ,&nbsp;Guanghui Sun ,&nbsp;Xiangyu Shao\",\"doi\":\"10.1016/j.actaastro.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise on-orbit assembly of Space Solar Power Station imposes great challenges on its effective rigid–flexible coupling dynamics modeling and low vibration control. This paper presents an integrated framework combining a reduced-order dynamics model and an improved fractional-order controller of Space Solar Power Station. The dynamics model, developed through Lagrangian equations and finite element methods, reduces system complexity from tens of thousands to tens of degrees of freedom while preserving essential dynamic properties. The fractional-order controller is proposed on this foundation, containing a robust fractional-order sliding surface for chattering suppression and the super-twisting algorithm for uncertainty and disturbance rejection. Simulations of three critical assembly phases are conducted to demonstrate the closed-loop behavior, simulation results show significant improvements in convergence time (reductions ranging from 44.6% for truss docking to 78.2% for antenna adjustment) and vibration suppression (vibration mode peaks decrease from 49 to 9 for <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and 65 to almost 0 for <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) compared to the PID controller, verifying the effectiveness of the proposed control strategy.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"232 \",\"pages\":\"Pages 164-173\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576525001547\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525001547","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

空间太阳能电站的精确在轨装配对其有效的刚柔耦合动力学建模和低振动控制提出了很大的挑战。提出了一种将空间太阳能电站降阶动力学模型与改进的分数阶控制器相结合的集成框架。通过拉格朗日方程和有限元方法建立的动力学模型,在保留基本动态特性的同时,将系统复杂性从数万个自由度降低到数十个自由度。在此基础上提出了分数阶控制器,该控制器包含抑制抖振的鲁棒分数阶滑动面和抑制不确定性和干扰的超扭转算法。仿真结果表明,与PID控制器相比,该控制策略在收敛时间(桁架对接时降低44.6%,天线调整时降低78.2%)和振动抑制(η1时振动模态峰值从49降至9,η2时振动模态峰值从65降至接近0)方面有显著改善,验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigid–flexible coupling dynamics modeling and fractional-order sliding mode control for large space solar power stations
Precise on-orbit assembly of Space Solar Power Station imposes great challenges on its effective rigid–flexible coupling dynamics modeling and low vibration control. This paper presents an integrated framework combining a reduced-order dynamics model and an improved fractional-order controller of Space Solar Power Station. The dynamics model, developed through Lagrangian equations and finite element methods, reduces system complexity from tens of thousands to tens of degrees of freedom while preserving essential dynamic properties. The fractional-order controller is proposed on this foundation, containing a robust fractional-order sliding surface for chattering suppression and the super-twisting algorithm for uncertainty and disturbance rejection. Simulations of three critical assembly phases are conducted to demonstrate the closed-loop behavior, simulation results show significant improvements in convergence time (reductions ranging from 44.6% for truss docking to 78.2% for antenna adjustment) and vibration suppression (vibration mode peaks decrease from 49 to 9 for η1 and 65 to almost 0 for η2) compared to the PID controller, verifying the effectiveness of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信