Jacob Kauffmann, Jonas Dippel, Lukas Ruff, Wojciech Samek, Klaus-Robert Müller, Grégoire Montavon
{"title":"可解释的人工智能揭示了无监督学习模型中的聪明汉斯效应","authors":"Jacob Kauffmann, Jonas Dippel, Lukas Ruff, Wojciech Samek, Klaus-Robert Müller, Grégoire Montavon","doi":"10.1038/s42256-025-01000-2","DOIUrl":null,"url":null,"abstract":"Unsupervised learning has become an essential building block of artifical intelligence systems. The representations it produces, for example, in foundation models, are critical to a wide variety of downstream applications. It is therefore important to carefully examine unsupervised models to ensure not only that they produce accurate predictions on the available data but also that these accurate predictions do not arise from a Clever Hans (CH) effect. Here, using specially developed explainable artifical intelligence techniques and applying them to popular representation learning and anomaly detection models for image data, we show that CH effects are widespread in unsupervised learning. In particular, through use cases on medical and industrial inspection data, we demonstrate that CH effects systematically lead to significant performance loss of downstream models under plausible dataset shifts or reweighting of different data subgroups. Our empirical findings are enriched by theoretical insights, which point to inductive biases in the unsupervised learning machine as a primary source of CH effects. Overall, our work sheds light on unexplored risks associated with practical applications of unsupervised learning and suggests ways to systematically mitigate CH effects, thereby making unsupervised learning more robust. Building on recent explainable AI techniques, this Article highlights the pervasiveness of Clever Hans effects in unsupervised learning and the substantial risks associated with these effects in terms of the prediction accuracy on new data.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"7 3","pages":"412-422"},"PeriodicalIF":18.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42256-025-01000-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Explainable AI reveals Clever Hans effects in unsupervised learning models\",\"authors\":\"Jacob Kauffmann, Jonas Dippel, Lukas Ruff, Wojciech Samek, Klaus-Robert Müller, Grégoire Montavon\",\"doi\":\"10.1038/s42256-025-01000-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised learning has become an essential building block of artifical intelligence systems. The representations it produces, for example, in foundation models, are critical to a wide variety of downstream applications. It is therefore important to carefully examine unsupervised models to ensure not only that they produce accurate predictions on the available data but also that these accurate predictions do not arise from a Clever Hans (CH) effect. Here, using specially developed explainable artifical intelligence techniques and applying them to popular representation learning and anomaly detection models for image data, we show that CH effects are widespread in unsupervised learning. In particular, through use cases on medical and industrial inspection data, we demonstrate that CH effects systematically lead to significant performance loss of downstream models under plausible dataset shifts or reweighting of different data subgroups. Our empirical findings are enriched by theoretical insights, which point to inductive biases in the unsupervised learning machine as a primary source of CH effects. Overall, our work sheds light on unexplored risks associated with practical applications of unsupervised learning and suggests ways to systematically mitigate CH effects, thereby making unsupervised learning more robust. Building on recent explainable AI techniques, this Article highlights the pervasiveness of Clever Hans effects in unsupervised learning and the substantial risks associated with these effects in terms of the prediction accuracy on new data.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"7 3\",\"pages\":\"412-422\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42256-025-01000-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-025-01000-2\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-025-01000-2","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Explainable AI reveals Clever Hans effects in unsupervised learning models
Unsupervised learning has become an essential building block of artifical intelligence systems. The representations it produces, for example, in foundation models, are critical to a wide variety of downstream applications. It is therefore important to carefully examine unsupervised models to ensure not only that they produce accurate predictions on the available data but also that these accurate predictions do not arise from a Clever Hans (CH) effect. Here, using specially developed explainable artifical intelligence techniques and applying them to popular representation learning and anomaly detection models for image data, we show that CH effects are widespread in unsupervised learning. In particular, through use cases on medical and industrial inspection data, we demonstrate that CH effects systematically lead to significant performance loss of downstream models under plausible dataset shifts or reweighting of different data subgroups. Our empirical findings are enriched by theoretical insights, which point to inductive biases in the unsupervised learning machine as a primary source of CH effects. Overall, our work sheds light on unexplored risks associated with practical applications of unsupervised learning and suggests ways to systematically mitigate CH effects, thereby making unsupervised learning more robust. Building on recent explainable AI techniques, this Article highlights the pervasiveness of Clever Hans effects in unsupervised learning and the substantial risks associated with these effects in terms of the prediction accuracy on new data.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.