提高概念清晰度和混杂因素识别:提高ENIGMA临床精神病高风险(chrp)预后准确性的实用方法

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andrea Raballo, Michele Poletti, Antonio Preti
{"title":"提高概念清晰度和混杂因素识别:提高ENIGMA临床精神病高风险(chrp)预后准确性的实用方法","authors":"Andrea Raballo, Michele Poletti, Antonio Preti","doi":"10.1038/s41380-025-02948-8","DOIUrl":null,"url":null,"abstract":"<p>Zhu and colleagues [1] utilized structural magnetic resonance imaging data from the ENIGMA Clinical High-Risk for Psychosis (CHR-P) Working Group cohort (based on 21 sites) to assess the ability of machine learning to predict psychosis. The primary outcome, transiton to psychosis, occurred in 144 out of 1165 CHR-P individuals (12.36%) and the study examined whether neuroimaging data processed through machine learning could discriminate between three CHR-P subgroups (transitioned, not transitioned, unknown outcome) and healthy controls.</p><p>The classifier achieved an accuracy of 85% on the training dataset and 73% on the independent confirmatory dataset. CHR-P individuals who did not transition to psychosis were more likely to be classified as healthy controls compared to those who developed psychosis (classification rate to healthy controls: CHR-P transitioned, 30%; CHR-P not transitioned, 73%; CHR-P unknown outcome, 80%).</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"55 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing conceptual clarity and confounders identification: a pragmatic way to enhance prognostic precision in ENIGMA clinical high risk for psychosis (CHR-P)\",\"authors\":\"Andrea Raballo, Michele Poletti, Antonio Preti\",\"doi\":\"10.1038/s41380-025-02948-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zhu and colleagues [1] utilized structural magnetic resonance imaging data from the ENIGMA Clinical High-Risk for Psychosis (CHR-P) Working Group cohort (based on 21 sites) to assess the ability of machine learning to predict psychosis. The primary outcome, transiton to psychosis, occurred in 144 out of 1165 CHR-P individuals (12.36%) and the study examined whether neuroimaging data processed through machine learning could discriminate between three CHR-P subgroups (transitioned, not transitioned, unknown outcome) and healthy controls.</p><p>The classifier achieved an accuracy of 85% on the training dataset and 73% on the independent confirmatory dataset. CHR-P individuals who did not transition to psychosis were more likely to be classified as healthy controls compared to those who developed psychosis (classification rate to healthy controls: CHR-P transitioned, 30%; CHR-P not transitioned, 73%; CHR-P unknown outcome, 80%).</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-025-02948-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02948-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Zhu 及其同事[1]利用 ENIGMA 临床精神病高危人群(CHR-P)工作组队列(基于 21 个研究点)的结构磁共振成像数据,评估了机器学习预测精神病的能力。在1165名CHR-P患者中,有144人(12.36%)出现了主要结果--精神病转归,该研究考察了通过机器学习处理的神经影像数据能否区分三个CHR-P亚组(转归、未转归、未知结果)和健康对照组。与发展为精神病的患者相比,未过渡到精神病的 CHR-P 患者更有可能被归类为健康对照组(健康对照组的分类率为 30%,过渡到精神病的 CHR-P 患者的分类率为 30%,未过渡到精神病的 CHR-P 患者的分类率为 30%):CHR-P转为健康对照的比例为30%;CHR-P未转为健康对照的比例为73%;CHR-P结果未知的比例为80%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing conceptual clarity and confounders identification: a pragmatic way to enhance prognostic precision in ENIGMA clinical high risk for psychosis (CHR-P)

Zhu and colleagues [1] utilized structural magnetic resonance imaging data from the ENIGMA Clinical High-Risk for Psychosis (CHR-P) Working Group cohort (based on 21 sites) to assess the ability of machine learning to predict psychosis. The primary outcome, transiton to psychosis, occurred in 144 out of 1165 CHR-P individuals (12.36%) and the study examined whether neuroimaging data processed through machine learning could discriminate between three CHR-P subgroups (transitioned, not transitioned, unknown outcome) and healthy controls.

The classifier achieved an accuracy of 85% on the training dataset and 73% on the independent confirmatory dataset. CHR-P individuals who did not transition to psychosis were more likely to be classified as healthy controls compared to those who developed psychosis (classification rate to healthy controls: CHR-P transitioned, 30%; CHR-P not transitioned, 73%; CHR-P unknown outcome, 80%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信