{"title":"肿瘤组织分类的重构:基于多实例学习的全幻灯片图像分类多尺度框架。","authors":"Zixuan Wu, Haiyong He, Xiushun Zhao, Zhenghui Lin, Yanyan Ye, Jing Guo, Wanming Hu, Xiaobing Jiang","doi":"10.1007/s11517-025-03341-x","DOIUrl":null,"url":null,"abstract":"<p><p>In cancer pathology diagnosis, analyzing Whole Slide Images (WSI) encounters challenges like invalid data, varying tissue features at different magnifications, and numerous hard samples. Multiple Instance Learning (MIL) is a powerful tool for addressing weakly supervised classification in WSI-based pathology diagnosis. However, existing MIL frameworks cannot simultaneously tackle these issues. To address these challenges, we propose an integrated recognition framework comprising three complementary components: a preprocessing selection method, an Efficient Feature Pyramid Network (EFPN) model for multi-instance learning, and a Similarity Focal Loss. The preprocessing selection method accurately identifies and selects representative image patches, effectively reducing invalid data interference and enhancing subsequent model training efficiency. The EFPN model, inspired by pathologists' diagnostic processes, captures different tissue features in WSI images by constructing a multi-scale feature pyramid, enhancing the model's ability to recognize tumor tissue features. Additionally, the Similarity Focal Loss further improves the model's discriminative power and generalization performance by focusing on hard samples and emphasizing classification boundary information. The test accuracy for binary tumor classification on the CAMELYON16 and two private datasets reached 93.58%, 84.74%, and 99.91%, respectively, all of which outperform existing techniques.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reimagining cancer tissue classification: a multi-scale framework based on multi-instance learning for whole slide image classification.\",\"authors\":\"Zixuan Wu, Haiyong He, Xiushun Zhao, Zhenghui Lin, Yanyan Ye, Jing Guo, Wanming Hu, Xiaobing Jiang\",\"doi\":\"10.1007/s11517-025-03341-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cancer pathology diagnosis, analyzing Whole Slide Images (WSI) encounters challenges like invalid data, varying tissue features at different magnifications, and numerous hard samples. Multiple Instance Learning (MIL) is a powerful tool for addressing weakly supervised classification in WSI-based pathology diagnosis. However, existing MIL frameworks cannot simultaneously tackle these issues. To address these challenges, we propose an integrated recognition framework comprising three complementary components: a preprocessing selection method, an Efficient Feature Pyramid Network (EFPN) model for multi-instance learning, and a Similarity Focal Loss. The preprocessing selection method accurately identifies and selects representative image patches, effectively reducing invalid data interference and enhancing subsequent model training efficiency. The EFPN model, inspired by pathologists' diagnostic processes, captures different tissue features in WSI images by constructing a multi-scale feature pyramid, enhancing the model's ability to recognize tumor tissue features. Additionally, the Similarity Focal Loss further improves the model's discriminative power and generalization performance by focusing on hard samples and emphasizing classification boundary information. The test accuracy for binary tumor classification on the CAMELYON16 and two private datasets reached 93.58%, 84.74%, and 99.91%, respectively, all of which outperform existing techniques.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03341-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03341-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Reimagining cancer tissue classification: a multi-scale framework based on multi-instance learning for whole slide image classification.
In cancer pathology diagnosis, analyzing Whole Slide Images (WSI) encounters challenges like invalid data, varying tissue features at different magnifications, and numerous hard samples. Multiple Instance Learning (MIL) is a powerful tool for addressing weakly supervised classification in WSI-based pathology diagnosis. However, existing MIL frameworks cannot simultaneously tackle these issues. To address these challenges, we propose an integrated recognition framework comprising three complementary components: a preprocessing selection method, an Efficient Feature Pyramid Network (EFPN) model for multi-instance learning, and a Similarity Focal Loss. The preprocessing selection method accurately identifies and selects representative image patches, effectively reducing invalid data interference and enhancing subsequent model training efficiency. The EFPN model, inspired by pathologists' diagnostic processes, captures different tissue features in WSI images by constructing a multi-scale feature pyramid, enhancing the model's ability to recognize tumor tissue features. Additionally, the Similarity Focal Loss further improves the model's discriminative power and generalization performance by focusing on hard samples and emphasizing classification boundary information. The test accuracy for binary tumor classification on the CAMELYON16 and two private datasets reached 93.58%, 84.74%, and 99.91%, respectively, all of which outperform existing techniques.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).