{"title":"基于GRU-GC算法的颅内脑电图癫痫病灶定位。","authors":"Xiaojia Wang, Dayang Wu, Chunfeng Yang","doi":"10.1186/s40708-025-00254-1","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one of the most common clinical diseases, which is caused by abnormal discharge of brain nerves. Around 30% of patients will develop drug-resistant epilepsy that are hard to be cured by anti-epileptic drug treatment. This patient cohort are ideal candidate for surgical resection of the epileptic focus. For safety and maximum effective rate, the key to success of the operation is to identify the focus area and normal functional area accurately in the preoperative evaluation stage. Intracranial EEG (iEEG) has attracted much attention for its precise capture of the state of rapid brain activity and its strong locality. To automate the process of iEEG inspection and surgical evaluation, this paper propose a Gated Recurrent Unit-Granger Causality (GRU-GC) algorithm to detect effective connectivity between channels and construct a directed graph. From six local features, the top five feature combinations were selected to differentiate between epileptic foci and non-epileptic regions. Experiments indicate that these features are most discriminative during the ictal phase, yielding superior classification accuracy. Compared to traditional time-series-based methods, this study shows that GRU-GC algorithm is efficient in building effective graph model for improving preoperative epilepsy evaluations.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910482/pdf/","citationCount":"0","resultStr":"{\"title\":\"Localization of epileptic foci from intracranial EEG using the GRU-GC algorithm.\",\"authors\":\"Xiaojia Wang, Dayang Wu, Chunfeng Yang\",\"doi\":\"10.1186/s40708-025-00254-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is one of the most common clinical diseases, which is caused by abnormal discharge of brain nerves. Around 30% of patients will develop drug-resistant epilepsy that are hard to be cured by anti-epileptic drug treatment. This patient cohort are ideal candidate for surgical resection of the epileptic focus. For safety and maximum effective rate, the key to success of the operation is to identify the focus area and normal functional area accurately in the preoperative evaluation stage. Intracranial EEG (iEEG) has attracted much attention for its precise capture of the state of rapid brain activity and its strong locality. To automate the process of iEEG inspection and surgical evaluation, this paper propose a Gated Recurrent Unit-Granger Causality (GRU-GC) algorithm to detect effective connectivity between channels and construct a directed graph. From six local features, the top five feature combinations were selected to differentiate between epileptic foci and non-epileptic regions. Experiments indicate that these features are most discriminative during the ictal phase, yielding superior classification accuracy. Compared to traditional time-series-based methods, this study shows that GRU-GC algorithm is efficient in building effective graph model for improving preoperative epilepsy evaluations.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"12 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910482/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-025-00254-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00254-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Localization of epileptic foci from intracranial EEG using the GRU-GC algorithm.
Epilepsy is one of the most common clinical diseases, which is caused by abnormal discharge of brain nerves. Around 30% of patients will develop drug-resistant epilepsy that are hard to be cured by anti-epileptic drug treatment. This patient cohort are ideal candidate for surgical resection of the epileptic focus. For safety and maximum effective rate, the key to success of the operation is to identify the focus area and normal functional area accurately in the preoperative evaluation stage. Intracranial EEG (iEEG) has attracted much attention for its precise capture of the state of rapid brain activity and its strong locality. To automate the process of iEEG inspection and surgical evaluation, this paper propose a Gated Recurrent Unit-Granger Causality (GRU-GC) algorithm to detect effective connectivity between channels and construct a directed graph. From six local features, the top five feature combinations were selected to differentiate between epileptic foci and non-epileptic regions. Experiments indicate that these features are most discriminative during the ictal phase, yielding superior classification accuracy. Compared to traditional time-series-based methods, this study shows that GRU-GC algorithm is efficient in building effective graph model for improving preoperative epilepsy evaluations.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing