CBX3通过CUL3/NRF2/GPX2轴抑制结直肠癌中的铁变态反应,从而促进多药耐受性

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaoming Bai, Tinghong Duan, Jiaofang Shao, Yutong Zhang, Guangyuan Xing, Jie Wang, Xue Liu, Min Wang, Yuanqiao He, Hai Wang, Zhi-Yuan Zhang, Min Ni, Jin-Yong Zhou, Jinshun Pan
{"title":"CBX3通过CUL3/NRF2/GPX2轴抑制结直肠癌中的铁变态反应,从而促进多药耐受性","authors":"Xiaoming Bai, Tinghong Duan, Jiaofang Shao, Yutong Zhang, Guangyuan Xing, Jie Wang, Xue Liu, Min Wang, Yuanqiao He, Hai Wang, Zhi-Yuan Zhang, Min Ni, Jin-Yong Zhou, Jinshun Pan","doi":"10.1038/s41388-025-03337-9","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoresistance poses a significant challenge in colorectal cancer (CRC) treatment. However, the mechanisms underlying chemoresistance remain unclear. CBX3 promoted proliferation and metastasis in CRC. However, the role and mechanism of CBX3 in chemoresistance remain unknown. Therefore, we aimed to investigate the effects and mechanisms of CBX3 on multidrug resistance in CRC. Our studies showed that higher levels of CBX3 expression were associated with poor survival, especially in groups with progression following chemotherapy. CBX3 overexpression increased Irinotecan and Oxaliplatin resistance, whereas CBX3 knockdown suppressed multidrug resistance in CRC cells. Additionally, CBX3 inhibited ferroptosis associated with multidrug resistance, and the ferroptosis activators prevented CBX3 overexpression-mediated cell survival. RNA sequencing revealed that the NRF2-signaling pathway was involved in this process. CBX3-upregulated NRF2 protein expression by directly binding to the promoter of Cullin3 (CUL3) to suppress CUL3 transcription and CUL3-mediated NRF2 degradation. Moreover, Glutathione Peroxidase 2 (GPX2) was downstream of the CBX3-NRF2 pathway in CRC chemoresistance. ML385, an NRF2 inhibitor, suppressed GPX2 expression, and increased ferroptosis in PDX models. Our study identified CBX3/NRF2/GPX2 axis may be a novel signaling pathway that mediates multidrug resistance in CRC. This study proposes developing novel strategies for cancer treatment to overcome drug resistance in the future.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBX3 promotes multidrug resistance by suppressing ferroptosis in colorectal carcinoma via the CUL3/NRF2/GPX2 axis.\",\"authors\":\"Xiaoming Bai, Tinghong Duan, Jiaofang Shao, Yutong Zhang, Guangyuan Xing, Jie Wang, Xue Liu, Min Wang, Yuanqiao He, Hai Wang, Zhi-Yuan Zhang, Min Ni, Jin-Yong Zhou, Jinshun Pan\",\"doi\":\"10.1038/s41388-025-03337-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemoresistance poses a significant challenge in colorectal cancer (CRC) treatment. However, the mechanisms underlying chemoresistance remain unclear. CBX3 promoted proliferation and metastasis in CRC. However, the role and mechanism of CBX3 in chemoresistance remain unknown. Therefore, we aimed to investigate the effects and mechanisms of CBX3 on multidrug resistance in CRC. Our studies showed that higher levels of CBX3 expression were associated with poor survival, especially in groups with progression following chemotherapy. CBX3 overexpression increased Irinotecan and Oxaliplatin resistance, whereas CBX3 knockdown suppressed multidrug resistance in CRC cells. Additionally, CBX3 inhibited ferroptosis associated with multidrug resistance, and the ferroptosis activators prevented CBX3 overexpression-mediated cell survival. RNA sequencing revealed that the NRF2-signaling pathway was involved in this process. CBX3-upregulated NRF2 protein expression by directly binding to the promoter of Cullin3 (CUL3) to suppress CUL3 transcription and CUL3-mediated NRF2 degradation. Moreover, Glutathione Peroxidase 2 (GPX2) was downstream of the CBX3-NRF2 pathway in CRC chemoresistance. ML385, an NRF2 inhibitor, suppressed GPX2 expression, and increased ferroptosis in PDX models. Our study identified CBX3/NRF2/GPX2 axis may be a novel signaling pathway that mediates multidrug resistance in CRC. This study proposes developing novel strategies for cancer treatment to overcome drug resistance in the future.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-025-03337-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03337-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CBX3 promotes multidrug resistance by suppressing ferroptosis in colorectal carcinoma via the CUL3/NRF2/GPX2 axis.

Chemoresistance poses a significant challenge in colorectal cancer (CRC) treatment. However, the mechanisms underlying chemoresistance remain unclear. CBX3 promoted proliferation and metastasis in CRC. However, the role and mechanism of CBX3 in chemoresistance remain unknown. Therefore, we aimed to investigate the effects and mechanisms of CBX3 on multidrug resistance in CRC. Our studies showed that higher levels of CBX3 expression were associated with poor survival, especially in groups with progression following chemotherapy. CBX3 overexpression increased Irinotecan and Oxaliplatin resistance, whereas CBX3 knockdown suppressed multidrug resistance in CRC cells. Additionally, CBX3 inhibited ferroptosis associated with multidrug resistance, and the ferroptosis activators prevented CBX3 overexpression-mediated cell survival. RNA sequencing revealed that the NRF2-signaling pathway was involved in this process. CBX3-upregulated NRF2 protein expression by directly binding to the promoter of Cullin3 (CUL3) to suppress CUL3 transcription and CUL3-mediated NRF2 degradation. Moreover, Glutathione Peroxidase 2 (GPX2) was downstream of the CBX3-NRF2 pathway in CRC chemoresistance. ML385, an NRF2 inhibitor, suppressed GPX2 expression, and increased ferroptosis in PDX models. Our study identified CBX3/NRF2/GPX2 axis may be a novel signaling pathway that mediates multidrug resistance in CRC. This study proposes developing novel strategies for cancer treatment to overcome drug resistance in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信